В работе проведены исследования оптических свойств твердых растворов и бинарных компонентов системы CdS–ZnTe. Методом ИК–спектроскопии выявлен химический состав поверхности исследуемых полупроводников и подтверждено образование твердых растворов замещения. По полученным УФ–спектрам рассчитана одна их важнейших характеристик полупроводников — ширина запрещенной зоны. КР–спектроскопические исследования позволили выявить частоты наибольшей люминесценции, максимум излучения и дополнительно идентифицировать полученные твердые растворы.
Ключевые слова: оптические свойства,спектроскопия, полупроводники, химический состав поверхности, люминесценция.
1. Введение
Исследование природы и свойств поверхности сопряжено с большими экспериментальными трудностями. Поскольку традиционные методы изучения дефектов — электрофизические и методы с использованием радиоактивных индикаторов — неприменимы к полидисперсным материалам, становится очевидным, что развитие современных представлений о механизме молекулярных процессов, протекающих на поверхности твердого тела, требующие знаний о природе возникающей при этом связи, структуре поверхности, характере движения молекул на поверхности, невозможно без использования спектральных методов исследования, дающих прямую информацию о процессах взаимодействия на молекулярном уровне [1, 2]. Особое место здесь должно принадлежать ИК–, УФ– и КР–спектроскопии.
Эти методы позволяют судить о составе и строении поверхностных соединений, природе связей адсорбированных молекул с поверхностью, существовании различных типов поверхностных соединений, об активных центрах поверхности твердого тела.
2. Методика эксперимента
В качестве объектов исследования служили CdS, ZnTe, а также ряд твердых растворов системы CdS–ZnTe. Исследуемые объекты были представлены в виде мелкодисперсных порошков.
ИК–спектры компонентов системы CdS–ZnTe снимали на Фурье–спектрометре инфракрасном ИнфраЛюм ФТ–02 с приставкой МНПВО (материал кристалла — германий, The PIKE Tecnologies HATR) в спектральном диапазоне 830–4000 см–1 [3, 4].
Электронные УФ–спектры — на спектрофотометре UV-2501PC фирмы «Shimadzu» c приставкой диффузного отражения ISR-240A в диапазоне 190–900 нм с разрешением 1 нм.
УФ–спектроскопические исследования проводили для получения информации о значениях ширины запрещенной зоны изучаемых полупроводников.
Ширину запрещенной зоны определяли по формуле:
ΔE = h · c / l (1),
где h — постоянная Планка (6.626 · 10–34 Дж · с), с — скорость света (3 · 108 м/с), l — длина волны.
Спектры комбинационного рассеяния света (КРС) — на рамановском Фурье–спектрометре BRUKER RFS-100/s. Длина волны возбуждающего лазера l = 785 нм, мощность — до 100 мВт, спектральное разрешение — 3 см–1.
КР–спектроскопические исследования использовали для изучения оптических, физико-химических свойств компонентов системы CdS–ZnTe и для идентификации образования в ней твердых растворов замещения.
3. Экспериментальные результаты
3.1. ИК–спектроскопические исследования
Метод ИКС использовали для изучения кислотно-основных и адсорбционных свойств поверхности, выяснения природы адсорбционных комплексов, а так же для дополнительного подтверждение образования в системе CdS–ZnTe твердых растворов [5].
Результаты ИК–спектроскопических исследований представлены на рис. 1.
Как видно из ИК–спектров, исходная поверхность бинарных компонентов и твердых растворов системы CdS — ZnTe содержит:
- полосы поглощения в области 3520–3690 см-1, принадлежащие валентным колебаниям молекул воды;
- полосу поглощения 3750 см-1 принадлежащую валентным колебаниям структурных гидроксильных групп;
- полосы в области 2220–2400 см-1, относящиеся к молекулярно-адсорбированному CO2;
- полосы в и интервале 1170–1600 см-1, обусловлены адсорбцией Н2О и СО2 из воздуха или иными загрязнениями поверхности органическими веществами.
Рис. 1. ИК–спектры пропускания компонентов системы, хранившихся на воздухе: 1 — CdS, 2 — (CdS)0,9(ZnTe)0,1, 3 — (CdS)0,75(ZnTe)0,25, 4 — (CdS)0,5(ZnTe)0,5, 5 — (CdS)0,25(ZnTe)0,75, 6 — (CdS)0,1(ZnTe)0,9, 7 — ZnTe
При расположении ИК–спектров образцов в ряд CdS → (CdS)х(ZnTe)1–х → ZnTe прослеживается закономерность: с изменением состава наблюдается смещение пиков, отвечающих колебаниям молекулярно-адсорбированного СO2, а также изменение их интенсивности. Данный факт является дополнительным подтверждением образования твердых растворов в системе CdS–ZnTe.
3.2. УФ– спектроскопические исследования
Результаты УФ–спектроскопических исследований представлены на рис. 2 и в табл. 1.
Рис. 2. УФ–спектры компонентов системы CdS−ZnTe: 1 — CdS; 2 — (CdS)0.9(ZnTe)0.1; 3 — (CdS)0.75(ZnTe)0.25;4 — (CdS)0.5(ZnTe)0.5; 5 — (CdS)0.25(ZnTe)0.75; 6 — (CdS)0.1(ZnTe)0.9; 7 — ZnTe
При образовании твердых растворов из исходных бинарных компонентов ∆Е должна изменяться с составом. Исходя из этого, по изменению ширины запрещенной зоны компонентов системы можно судить об образовании твердых растворов.
По полученным УФ–спектрам рассчитаны значения ΔЕ — ширины запрещенной зоны. Край полосы отражения для исследованных компонентов лежит в области от 569 нм до 858 нм.
Таблица 1
Значения ширины запрещенной зоны компонентов системы CdS−ZnTe
Состав |
∆Е, эВ |
CdS |
2.44 |
(CdS)0.9(ZnTe)0.1 |
2.16 |
(CdS)0.75(ZnTe)0.25 |
2.66 |
(CdS)0.5(ZnTe)0.5 |
1.56 |
(CdS)0.25(ZnTe)0.75 |
2.02 |
(CdS)0.1(ZnTe)0/9 |
2.23 |
ZnTe |
2.24 |
Анализ полученных зависимостей показывает, что рассчитанная ширина запрещенной зоны для бинарных компонентов практически совпадает с литературными данными [6]. Для сульфида кадмия она равна 2.44 эВ (2.53 эВ — табличное значение), а для теллурида цинка — 2.24 эВ (2.23 эВ — табличное значение).
3.3. КР– спектроскопические исследования
Результаты исследования комбинационного рассеяния компонентов системы CdS–ZnTe представлены на рис. 3, 4 и в табл. 1.
Рис. 3. Спектры комбинационного рассеяния твердых растворов системы CdS−ZnTe: 1 — (CdS)0,9(ZnTe)0,1; 2 — CdS
Рис. 4. Спектры комбинационного рассеяния бинарных соединений и твердых растворов системы CdS−ZnTe: 1 — (CdS)0,75(ZnTe)0,25; 2 — (CdS)0,1(ZnTe)0,9; 3 — ZnTe
Экспериментально получены спектры комбинационного рассеяния в областях стоксовского (0–4500 см-1) излучения. Люминесценция всех образцов при возбуждении излучением лазера при длине волны λ = 785 нм имеет разную интенсивность.
Значения частоты максимальной люминесценции для бинарных соединений и твердых растворов представлены в табл. 1. Они характеризуют изменение частоты оптических переходов в зависимости от концентрации ZnTe в системе CdS−ZnTe и свидетельствуют об изменении ширины запрещенной зоны при образовании твердого раствора.
Таблица 2
Значения частоты наибольшей люминесценции (νm) и максимума интенсивности излучения (I) кристаллической решетки компонентов системы CdS−ZnTe
Компонент |
νm, см-1 |
I, отн. ед. |
CdS |
2709 |
0.0598 |
(CdS)0.9(ZnTe)0.1 |
2991 |
0.1373 |
CdS)0.75(ZnTe)0.25 |
2908 |
0.0126 |
(CdS)0.1(ZnTe)0.9 |
1629 |
0.0043 |
ZnTe |
2991 |
0.0006 |
В КР–спектрах в стоксовской области присутствуют узкие пики, соответствующие частотам ωLO и ωTO колебаний кристаллической решетки исходных бинарных соединений с частотами ωLO = 305 см-1, ωTO = 234 и 243 см-1 [7] для CdS; ωLO = 206 см-1 и ωTO = 177 см-1 для ZnTe. Все перечисленные колебания наблюдаются в КР–спектрах исследуемых бинарных соединений CdS, ZnTe и их твердых растворов. Это позволяет идентифицировать исходные вещества и согласуется с данными рентгеноструктурного анализа.
В КР–спектрах твердых растворов, кроме линий, соответствующих колебаниям решеток CdS и ZnTe, присутствуют пики, относящиеся к межзонным переходам электронов и переходам электронов на примесные уровни внутри запрещенной зоны. Изменение интенсивности и частоты примесного излучения в зависимости от состава твердого раствора, а также смещение в зависимости от состава интенсивного пика, относящегося к межзонной рекомбинации, подтверждают образование твердых растворов замещения в изучаемой системе. Интенсивность пиков примесного излучения зависит от содержания сульфида кадмия и уменьшается с увеличением его концентрации.
Заключение
В работе проведено исследование оптических свойств компонентов полупроводниковой системы CdS–ZnTe. По результатам ИК–спектроскопических исследований химический состав исходной поверхности бинарных компонентов и твердых растворов в целом не отличается от химического состава поверхности других алмазоподобных полупроводников. Он представлен преимущественно адсорбированными молекулами воды (3520–3690 см–1), группами ОН– (3750 см–1), молекулярно-адсорбированным CO2 (2220–2400 см-1), адсорбированными Н2О и СО2 из воздуха (1170–1600 см-1), связями С–Н
(2820 см-1, 2900 см-1 и 2950 см-1). По результатам УФ–спектроскопических исследований рассчитаны значения ΔЕ — ширины запрещенной зоны. По результатам КР–спектроскопических исследований получены спектры комбинационного рассеяния в области стоксовского (0–4500 см-1) излучения, согласующиеся с данными рентгеноструктурного анализа, позволившие идентифицировать изучаемые объекты и рассчитать частоты наибольшей люминесценции и максимум интенсивности излучения.
Литература:
1. Антипьева, В. А. Физика полупроводников. Издание ВВИА им. проф. Н. Е. Жуковского, 1960–55с.
2. Кировская, И. А. Исследование свежеобразованных поверхностей соединений типа АIIBVI / И. А. Кировская, В. В. Даньшина, Е. М. Емельянова // Неорг. материалы. — 1989. — Т. 25. — № 3. — с. 379–381.
3. Киселев, А. В. Инфракрасные спектры поверхностных соединений / А. В. Киселев, В. И. Лынгин. — М.: Наука, 1972. — С. 395–397.
4. Литтл, Л. Инфракрасные спектры адсорбированных молекул. — М.: Мир, 1969. — 515 с
5. Давыдов, А. А. ИК–спектроскопия в химии поверхности окислов. — Новосибирск: Наука, 1984. — 245 с.
6. Горелик, С. С., Расторгуев, Л. Н., Скаков Ю. А. Рентгенографический и электрооптический анализ. — М.: Металлургия, 1970. — 107с.
7. Nakomoto, K. IR and Raman Spectra of Inorganic and Coordination Compounds. — New York: Willey, 1978. — 448 p