Статья посвящена решению проблемы создания обучающих приложений, похожих на компьютерные игры. Для создания таких приложений предлагается использовать программу TGF(TheGamesFactory). Описан процесс подготовки к созданию обучающего приложения-игры. Приведен пример программы, моделирующей тепловое движение молекул газа, которая создана с помощью TGF.
Ключевые слова:обучающая программа, компьютерная игра, компьютерное моделирование, компьютерная модель, газ, молекулы, молекулярно-кинетическая теория, TFG, TheGamesFactory.
Компьютерные игры сейчас очень популярны. Их использование в обучении может привести к преобразованию современных педагогических технологий. Специфика этих игр заключается в том, что в игре участвует компьютер, с помощью которого играющие взаимодействуют с заложенной в него программой [3, с. 79]. В играх используются следующие преимущества современных компьютеров:
- быстродействие;
- автоматизация рутинных вычислений;
- хранение больших объемов информации;
- точность действий;
- наглядность представляемой информации;
- способность к выполнению логических операций;
- возможность диалогового режима работы;
- имитация внешних воздействий.
Сейчас практически каждый желающий может создать компьютерную игру, используя доступный метод drag-and-drop (перетащить и бросить). Этот метод позволяет создавать приложения без программирования в традиционном его понимании (без составления текста программы на языке программирования высокого уровня). Он используется во многих областях применения компьютерной техники: создании сайтов, обработке текстов, редактировании звука и видео. Пользователю не нужно больше создавать код программы, он только оперирует объектами с помощью мыши, перемещая их внутри окна [4, с. 20].
Процесс подготовки к созданию обучающего приложения, похожего на игру, может включать следующие действия:
- выделение общего замысла программы-игры;
- разработку описания игры (заголовок, игровой жанр, краткий сценарий, описание предметов и персонажей, описание параметров настройки и интерфейса, требования к компьютеру, список необходимых инструментальных средств и т. п.);
- описание игры (основные ситуации и цели игры; стиль программы в целом; описание пространства, в котором происходит обучающая игра; художественное описание; разбиение на части и описание этих частей и их целей; звуковое сопровождение; степень реализма, эмоциональное воздействие на обучающихся и т. п.).
Для создания обучающих приложений в виде игр мы используем программу TGF (The Games Factory) [2]. В ней как раз и реализована идея графического программирования, которая заключается в том, что составитель программы не пишет программный код в виде текста, а использует для создания игр-приложений описанный выше метод drag-and-drop. Приложения, созданные с помощью TFG, предназначены для операционных систем семейства Windows. Например, одной из таких программ является приложение, моделирующее движение молекул газа в замкнутом пространстве. В нем моделируются следующие явления и процессы, наблюдаемые в газах (рис. 1):
- свободное движение и столкновения молекул газа друг с другом и со стенками сосуда (на рисунке не показано);
- зависимость скоростей молекул газа от его температуры (на рисунке не показано);
- смешивание двух газов (рис. 1б);
- броуновское движение (рис. 1в);
- движение частиц разреженного газа (рис. 1г);
- диффузия (рис. 1д);
- самодиффузия (рис. 1е);
- расширение газа в пустоту (рис. 1ж);
- сжатие и расширение газа (рис. 1з);
- выравнивание концентрации молекул газа (рис. 1и);
- пространственное распределение частиц газа согласно формуле Больцмана (рис. 1к).
Из собственного опыта нам известно, что изучение основ молекулярно-кинетической теории в школе является довольно сложным в плане преподавания процессом. Связано это с тем, что многие явления и процессы изучаются на умозрительном уровне, так как постановка учебного эксперимента, визуализирующего молекулярную структуру вещества чаще всего невозможна. В этом случае учителю может прийти на помощь компьютерная модель газа, выполняющая функцию визуализации, которая помогает сформировать у учащихся наглядные образы молекулярных картин [1]. Компьютерные модели представленных выше явлений и процессов являются интерактивными, что делает процесс их изучения динамичным и интересным для учащихся. Например, учащиеся могут нагревать и охлаждать газ, наблюдая, как при этом изменяется средняя скорость его молекул; изменять ширину щели, оказывая таким образом влияние на скорость протекания диффузии; перемещать подвижную перегородку в сосуде переменного объема, изменяя давление газа и концентрацию его молекул внутри этого сосуда; и т. п.
Важно отметить следующее. Учитель физики должен понимать, что компьютерное моделирование появилось в процессе обучения не для того, чтобы заменить собой реальный учебный эксперимент. В этом процессе оно занимает свою определенную нишу и чаще всего уместно тогда, когда по тем или иным причинам не может быть продемонстрирован учащимся или выполнен ими учебный натурный эксперимент. Но, в то же время, моделирование физических явлений и процессов, доступных непосредственному наблюдению и экспериментированию с ними, также имеет определенную педагогическую ценность. В нашем случае оно позволяет изучать явления изнутри (на микроуровне), в отличие от возможного в современных условиях учебного натурного эксперимента, который дает возможность наблюдать и экспериментально изучать их только на макроуровне. Тем не менее, учитель должен сам понимать и объяснять учащимся: на экране компьютера они наблюдают не анимацию реальных явлений и процессов, а лишь их модельное (в нашем случае существенно упрощенное) представление. Таким образом, используя компьютерные модели на уроках физики, учитель знакомит учащихся с одним из важнейших современных инструментов науки, облегчающим понимание физической картины окружающего нас мира.
Рис. 1. Кадры приложения, моделирующего тепловое движение молекул газа
Литература:
1. Данилов О. Е. Компьютерное моделирование движения молекул газа / О. Е. Данилов // Проблемы учебного физического эксперимента: Сборник научных и методических работ. Выпуск 2. — Глазов: ГГПИ, 1996. — С. 78–80.
2. Данилов О. Е. Компьютерное моделирование идеального газа с помощью метода drag-and-drop / О. Е. Данилов // Учебный физический эксперимент: Актуальные проблемы. Современные решения: Программа и материалы одиннадцатой Всероссийской научно-практической конференции. — Глазов: ГГПИ, 2006. — С. 32.
3. Трайнев В. А. Дистанционное обучение и его развитие (Обобщение методологии и практики использования) / В. А. Трайнев, В. Ф. Гуркин, О. В. Трайнев; Под общ. ред. В. А. Трайнева. — М.: Издательско-торговая корпорация «Дашков и К°», 2010. — 294 с.
4. Эхерн Л. Создание компьютерных игр без программирования / Л. Эхерн. — М.: ДМК Пресс, 2001. — 304 с.