Одной из основных задач решаемых конструктором при проектировании радиоаппаратуры, является защита ее от влияния дестабилизирующих факторов, в том числе шумов. Шумы могут иметь как внешнюю причину, т. е. их источник не входит в состав проектируемого изделия, так и внутреннюю — шум собственных элементов радиоаппаратуры. Существенный вклад в общую картину внутренних шумов вносит тепловой шум. Далее рассмотрим его природу на примере пассивного элемента электрических цепей — сопротивления (резистора).
Неупорядоченное тепловое движение атомных частиц вызывает так называемый тепловой шум во всех электрических проводниках. Статистические колебания плотности заряда в проводнике обусловлены тепловым перемещением носителей заряда [1,13]. Поэтому между концами проводника возникает быстро флуктуирующее напряжение UR — напряжение шума [1]. Эквивалентная электрическая схема реального сопротивления состоит из идеального сопротивления R, в котором нет шумов, включенного последовательно с источником напряжения шума UR (рисунок 1).
Рис. 1. Эквивалентная электрическая схема сопротивления с источником шума
Из второго начала термодинамики следует, что средние мощности теплового шума для волн, испускаемых источниками в интервале частот Av, равны и одинаково зависят от температуры [6, 23–32]. Эффективная мощность тепловых шумов , в проводнике с данным сопротивлением вычисляется по формуле:
(1)
Эта мощность, как следует из формулы (1), не зависит от величины сопротивления R.
Эффективное напряжение шума в сопротивлении R определяется усреднением по времени квадрата напряжения UR2 Эфф =UR2 (t). Квадрат эффективного напряжения шума определяется из уравнения Найквиста, полученного из условий термодинамического равновесия с учетом закона равнораспределения энергии по степеням свободы:
,
если h*v«k*T,
где k — постоянная Больцмана; Т — абсолютная температура в градусах Кельвина; R — сопротивление электрической цепи; h — постоянная Больцмана; v — частота электромагнитной волны, испускаемой источником тока; Δv — диапазон частот от v до v + A v колебаний электромагнитных волн в проводнике [1].
При выполнении неравенства h • v «k • Т напряжение шума зависит не от частоты v волны, а от интервала частот Δv [1–10]. При комнатной температуре 20°С) должно выполняться следующее условие для частот:
Соответствующая длина волны лежит в субмиллиметровом диапазоне, поэтому практически все электронные приборы работают на частотах значительно ниже [11–22].
Литература:
1. Слепова, С. В. Основы теории точности измерительных приборов: учебное пособие / С. В. Слепова. Челябинск: Изд-во ЮУрГУ, 2008. — 192 с.
2. Андреев П. Г. Микропроцессорные системы в учебном процессе / П. Г. Андреев, И. Ю. Наумова, Н. К. Юрков, Н. В. Горячев, И. Д. Граб, А. В. Лысенко // Труды международного симпозиума Надежность и качество. 2009. Т. 1. С. 161–164.
3. Андреев П. Г. Аналого-цифровые преобразователи в учебном процессе / П. Г. Андреев, И. Ю. Наумова // Труды международного симпозиума Надежность и качество. 2007. Т. 1. С. 67–69.
4. Горячев Н. В. Концепция создания автоматизированной системы выбора теплоотвода электрорадиоэлемента / Н. В. Горячев, Н. К. Юрков // Современные информационные технологии. 2010. № 11. С. 171–176.
5. Андреев П. Г. Применение CAD систем в проектировании радиоэлектронных средств / П. Г. Андреев, Н. А. Талибов, П. М. Осипов // Труды международного симпозиума Надежность и качество. 2007. Т. 1. С. 146–148.
6. Меркульев А. Ю. Системы охлаждения полупроводниковых электрорадиоизделий / А. Ю. Меркульев, Н. В. Горячев, Н. К. Юрков // Молодой ученый. — 2013. — № 11. — С. 143–145.
7. Андреев П. Г. / Моделирование переотражателей радиолучевых систем обнаружения. / Автореферат диссертации на соиск. уч. степ. канд. техн. наук: — Пенза: ПГУ, 2005 г. — 22 с.
8. Горячев Н. В. Программа инженерного расчёта температуры перегрева кристалла электрорадиокомпонента и его теплоотвода / Н. В. Горячев, А. В. Лысенко, И. Д. Граб, Н. К. Юрков // Труды международного симпозиума Надежность и качество. 2012. Т. 2. С. 242–243.
9. Андреев П. Г. Методы оценки технологичности конструкции РЭС / П. Г. Андреев, Н. К. Юрков, В. Я. Баннов // Труды международного симпозиума Надежность и качество. 2008. Т. 2. С. 129–131.
10. Горячев Н. В. Тепловая модель сменного блока исследуемого объекта / Н. В. Горячев // Труды международного симпозиума Надежность и качество. 2012. Т. 1. С. 263–263.
11. Андреев П. Г. / Моделирование переотражателей радиолучевых систем обнаружения. / Диссертация на соиск. уч. степ. канд. техн. наук: — Пенза: 2005 г. — 249 с.
12. Горячев Н. В. Алгоритм функционирования компьютерной программы стенда исследования теплоотводов/ Граб И. Д., Горячев Н. В., Лысенко А. В., Юрков Н. К.//Труды международного симпозиума Надежность и качество. 2011. Т. 1. С. 244–246.
13. Андреев П. Г. Основы проектирования электронных средств:учеб. пособие/П. Г. Андреев, И. Ю. Наумова//Пенза:Изд-во ПГУ, 2010.-124 с.
14. Горячев Н. В. Структура автоматизированной лаборатории исследования теплоотводов / Н. В. Горячев, И. Д. Граб, А. В. Лысенко, Н. К. Юрков // Труды международного симпозиума Надежность и качество. 2011. Т. 2. С. 119–120.
15. Андреев П. Г. Математическая модель распространения электромагнитных волн в помещении / П. Г. Андреев, А. Н. Якимов // Радиопромышленность. 2013. № 2. С. 74–82.
16. Горячев Н. В. Концептуальное изложение методики теплофизического проектирования радиоэлектронных средств / Н. В. Горячев, Н. К. Юрков // Современные информационные технологии. 2013. № 17. С. 214–215.
17. Горячев Н. В. Подсистема расчета средств охлаждения радиоэлементов в интегрированной среде проектирования электроники / Н. В. Горячев, И. Д. Граб, А. А. Рыжов // Известия высших учебных заведений. Поволжский регион. Технические науки. 2010. № 4. С. 25–30.
18. Горячев Н. В. К вопросу выбора вычислительного ядра лабораторного стенда автоматизированного лабораторного практикума / Н. В. Горячев, Н. К. Юрков // Современные информационные технологии. 2009. № 10. С. 128–130.
19. Трифоненко И. М. Обзор систем сквозного проектирования печатных плат радиоэлектронных средств / И. М. Трифоненко, Н. В. Горячев, И. И. Кочегаров, Н. К. Юрков // Труды международного симпозиума Надежность и качество. 2012. Т. 1. С. 396–399.
20. Горячев Н. В. Автоматизированный выбор системы охлаждения теплонагруженных элементов радиоэлектронных средств / Н. В. Горячев, И. Д. Граб, К. С. Петелин, В. А. Трусов, И. И. Кочегаров, Н. К. Юрков // Прикаспийский журнал: управление и высокие технологии. 2013. № 4. С. 136–143.
21. Сивагина Ю. А. Обзор современных симплексных ретрансляторов радиосигналов/ Ю. А. Сивагина, И. Д. Граб, Н. В. Горячев, Н. К. Юрков // Труды международного симпозиума Надежность и качество. 2012. Т. 1. С. 74–76.
22. Горячев Н. В. Проектирование топологии односторонних печатных плат, содержащих проволочные или интегральные перемычки / Н. В. Горячев, Н. К. Юрков // Труды международного симпозиума Надежность и качество. 2011. Т. 2. С. 122–124.
23. Горячев Н. В. Индикатор обрыва предохранителя как элемент первичной диагностики отказов РЭА / Н. В. Горячев, Н. К. Юрков // Труды международного симпозиума Надежность и качество. 2010. Т. 2. С. 78–79.
24. Горячев Н. В. Программные средства теплофизического проектирования печатных плат электронной аппаратуры / Н. В. Горячев, Н. К. Юрков // Молодой ученый. 2013. № 10. С. 128–130.
25. Падолко Е. П. Основные понятия имитационного моделирования и построение имитационной модели системы массового обслуживания / Е. П. Падолко //Современные информационные технологии. 2012. № 15. С. 43–45.
26. Горячев Н. В. Совершенствование структуры современного информационно-измерительного комплекса / Н. В. Горячев, Н. К. Юрков // Инновационные информационные технологии. 2013. Т. 3. № 2. С. 433–436.
27. Горячев Н. В. Алгоритм функционирования системы поддержки принятия решений в области выбора теплоотвода электрорадиоэлемента / Н. В. Горячев // Труды международного симпозиума Надежность и качество. 2012. Т. 2. С. 238–238.
28. Горячев Н. В. Типовой маршрут проектирования печатной платы и структура проекта в САПР электроники Altium Design / Н. В. Горячев, Н. К. Юрков // Труды международного симпозиума Надежность и качество. 2011. Т. 2. С. 120–122.
29. Юрков Н. К. Современные методы повышения эффективности работы полупроводниковых датчиков давления в условиях воздействия повышенной температуры / Н. К. Юрков, И. В. Ползунов, С. А. Москалев // Труды международного симпозиума Надежность и качество. 2012. Т. 2. С. 46–47.
30. Трусов В. А. О входном контроле элементной базы / В. А. Трусов // Труды международного симпозиума Надежность и качество. 2012. Т. 2. С. 399–400.
31. Меркульев А. Ю. Открытая архитектура современного информационно-измерительного комплекса /, Горячева Е. П., Юрков Н. К. // Молодой ученый. 2013. № 12 (59). С. 147–149.
32. Горячева Е. П. Обеспечение заданного теплового режима в современных приемопередающих средствах / Е. П. Горячева, Н. К. Юрков // Современные информационные технологии. 2013. № 18. С. 47–49.