Современный период развития сетей мобильной связи в РК близок к периоду насыщения — количество абонентов мобильной связи превышает число пользователей фиксированной связи. Значительный дополнительный доход должны приносить новые мультимедийные услуги, для реализации которых требуется повышенная скорость передачи информации [1–2,6]. Подавляющее большинство абонентов в сетях сотовой связи в РК включены в системы стандартов GSM/GPRS (Global System for Mobile communications/General Packet Radio Service) диапазонов 900 МГц и 1800 МГц поколений 2G/2,5G, плавно переходящие на 3G и 4G. Задача определения показателей качества обслуживания в современных сетях мобильной связи является актуальной. В качестве объектов исследования в цифровых СПС-ОП могут рассматриваться радиоинтерфейсы отдельных базовых станций и различные сетевые элементы, пропускная способность которых оказывает существенное влияние на качество обслуживания вызовов в целом. Информационный поток в радиоинтерфейсе базовой станции передается с высокой скоростью и формируется в соответствии с техническими особенностями и возможностями конкретного цифрового стандарта подвижной связи.
Ресурс каналов радиоинтерфейса остается ограниченным, хотя общим свойством цифровых систем мобильной связи является рост числа каналов в радиоинтерфейсах базовых станций. Применительно к оценке показателей качества связи в радиоинтерфейсе стандартов технологий GSM можно сослаться на исследования Невдяева Л. М., Быховского М. А., Фомина А. Ф., Степановой И.В [5–7], но, к сожалению, при анализе цифровых систем мобильной связи не в полной мере учтено влияние мобильности пользователей в условиях роста мультимедийного трафика.
В основу проводимых исследований положены методы теории телетрафика и программирования [3–4]. На основании классификации Кендалла-Башарина [4] в качестве математической модели функционирования радиоинтерфейса базовой станции СПС с учетом группового характера обслуживания в мультимедийных сетях связи выбрана СМО вида MI/M/V/L, которая представлена на рисунке 1. Основной характеристикой качества установления соединения является вероятность потери вызова, поступающего от мобильных абонентов.
Используя методы теории телетрафика, составим следующую систему уравнений:
; (1)
;
;
где Pi — вероятность занятости iканалов радиоинтерфеса базовой станции;
αгр– интенсивность нагрузки, поступающей на пучок каналов;
V — общее число каналов в радиоинтерфейсе базовой станции;
PV — вероятность потери вызовов;
ВстандартеGSM 900 скорость передачи цифрового речевого сигнала в канале TCH/FS равна 13 кбит/с. Для передачи данных используемых в оказании мультимедийных услуг или для обеспечения высокого качества передачи данных могут быть объединены несколько таких каналов: 13х4=52 кбит/с.
Обозначим величиной Pотк1 и Pотк4 вероятности того, что получит отказ вызов телефонии, поступающий на обслуживание и требующий для своего обслуживания один свободный канал и получит отказ в обслуживании мультимедийная услуга, требующая четыре канала для своего обслуживания соответственно. Величина Pотк1 будет равна вероятности того, что будут заняты все V каналов, когда величина Pотк4 будет равна вероятности того, что будут заняты более (V-4) каналов.
Рис. 1. Математическая модель функционирования радиоинтерфейса базовой станции СПС с учетом группового характера обслуживания в мультимедийных сетях связи
Программа, разработанная для решения системы уравнений для полнодоступного пучка каналов емкостью V=48 каналов, вероятности поступления одиночного и группового вызовов ф1+ф4=1 в радиоинтерфейсе базовой станции, блок-схема которой представлена на рисунке 2, выполнена с помощью программного обеспечения Borland Pascal 7.0. На рисунке 3 представлен фрагмент данной программы.
Рис. 2. Блок-схема программы расчета качества обслуживания радиоинтерфейсом базовой станции
Рис. 3. Фрагмент программы расчета качества обслуживания радиоинтерфейсом базовой станции
Таблица 1
Результаты решениясистемы уравнений для полнодоступного пучка каналов емкостью V=48 каналов, вероятности поступления одиночного и группового вызовов ф1+ф4=1 в программе BorlandPascal 7.0
=1700 вызовов в час, t1 =100c, t4=8c |
||||||
0,95 |
0,05 |
37,74 |
45,05 |
0,0744 |
0,171 |
0,636 |
0,9 |
0,1 |
39,65 |
42,87 |
0,053 |
0,208 |
0,735 |
0,85 |
0,15 |
41,76 |
40,7 |
0,0349 |
0,237 |
0,805 |
0,8 |
0,2 |
44,12 |
38,53 |
0,0208 |
0,259 |
0,85 |
0,75 |
0,25 |
46,75 |
36,36 |
0,0109 |
0,272 |
0,876 |
0,7 |
0,3 |
49,72 |
34,2 |
0,0049 |
0,279 |
0,884 |
0,65 |
0,35 |
53,1 |
32,01 |
0,0018 |
0,278 |
0,875 |
0,6 |
0,4 |
56,96 |
29,84 |
0,0005 |
0,258 |
0,852 |
Рис. 4. Результаты решения системы уравнений для полнодоступного пучка каналов емкостью V=48 каналов, вероятности поступления одиночного и группового вызовов ф1+ф4=1.
По оси х — интенсивность нагрузки, поступающей на пучок каналов;
по оси у — вероятность отказа в обслуживании.
Выводы
Из рисунка 4 видно, что объединение нескольких каналов в единый цифровой поток, выполняемое с целью снижения общего времени передачи информации, существенно повышает вероятность отказов в обслуживании групповой заявки.Результаты использования объединенных каналов трафика в системе стандарта GSM 900 уровня 2G, показало, что вероятность потерь по вызовам, требующим занятия группы из четырех каналов Ротк4, и вероятность потерь по вызовам, требующим занятия одного канала Ротк1, уменьшаются при увеличении интенсивности общего потока вызовов αгр.
Литература:
1. А. Б. Гольдштейн, Б. С. Гольдштейн. SOFTSWITCH//СПб.: BHV-2006.
2. Б. С. Гольдштейн, H. A. Соколов, Г. Г. Яновский. Сети связи. Учебник для ВУЗов // СПб.: БХВ-Петербург, 2011.
3. Афанасьев В. В., ДемчишинВ. И. Основные тенденции и игроки на.рынке NGN- инфраструктуры. Обзор NGN-концепций и продуктовой линейки NGN для сетей СПС от ведущих производителей телекоммуникационного оборудования //Технология и средства связи.- 2006. — № 6.-С.54–59.
4. Ионин Г. Л., Седол Я. Я. Статистическое моделирование систем телетрафика: — М.: Радио и связь, 1982.
5. Кудин А. В., Максименко В. Н. Оценка качества услуг пакетной-передачи данных в сетях сотовой подвижной связи // Мобильные системы. — 2003/- № 7.
6. Невдяев Л. М. Мобильная связь 3-его поколения (под редакцией Горностаева Ю. М.), МЦНТИ ООО «Мобильные коммуникации», 2000.
7. Степанова И:В. Проектирование сетей мобильной связи // Труды, МТУСИ: Сборник статей:-М.:-2004.