Модульное обучение уже занимает особую нишу в сфере высшего образования. Проведение занятий, составление блоков каждого модуля и представление дисциплины по модулям представляет интерес и имеет множество интерпретаций. В данной статье мы хотели бы показать наше представление структуры модуля через следующие блоки.
Блок входного контроля (БвхК): содержит небольшую проверочную работу на выявление остаточных знаний необходимых в изучении новой темы.
Теоретический блок краткого изложения (ТБкр): состоит из опорных таблиц, составленных преподавателем по каждому разделу изучаемой темы.
Теоретический блок работы с учебными элементами (ТБ): содержит более подробное рассмотрение каждого раздела изучаемой темы с доказательствами и примерами. Идет совместная работа преподавателя со студентами.
Блок применения (БП): Решение практических задач по изучаемым темам.
Блок углубления (БУ): Решение профессионально — прикладных задач и задач более сложного характера.
Блок контроля (БК): защита студентами изученной темы в виде решения аналогичных задач из блока применения, самостоятельной работы или устного опроса.
Блок стыковки (БС): рассмотрение наиболее типичных ошибок по теме и их ликвидация.
Блок выходного контроля (БВК): содержит РГР, ТР, контрольную работу или коллоквиум по изученной теме.
Приведем описание блоков модуля «ИНТЕГРАЛЫ»
БвхК: содержит математический диктант на знание таблицы производных.
ТБкр: Содержит таблицы, следующего содержания.
Таблица 1
Неопределенный интеграл |
||
Понятие первообразной |
Свойства неопределенного интеграла |
Таблица простейших интегралов |
Таблица 2
Методы интегрирования |
|||
Интегрирование заменой переменной |
Интегрирование рациональных дробей |
Интегрирование иррациональных функций |
Интегрирование тригонометрических функций |
Интегрирование по частям |
Таблица 3
Определенный интеграл |
Несобственные интегралы 1 рода |
Несобственные интегралы 2 рода |
Таблица 4:
Приложение определенного интеграла |
||
Вычисление площадей плоских фигур |
Вычисление длины дуги кривой |
Вычисление объемов тел |
ТБ: Подробное изучение каждой выданной таблицы, вывод формул, рассмотрение основных определений. Дополнение таблиц, полученной информацией.
БП: Решение примеров на интегрирование в следующей последовательности: непосредственное интегрирование, метод замены переменной, интегрирование по частям, интегрирование рациональные функций, интегрирование тригонометрических и иррациональных функций; вычисление определенного интеграла всеми изученными способами; несобственные интегралы; приложение интегрального исчисления: вычисление площадей, длин дуг, объемов.
БУ: Решаем прикладные задачи в строительстве: задачи на исследование деформации строительных сооружений и колебательных процессов, задачи, в которых рассматривается скорость протекания процессов и другие, связанные с конкретной специальностью обучаемого.
БК: Целесообразно составить три контрольные работы: 1) на основные простые методы интегрирования; 2) на интегрирование рациональных, тригонометрических и иррациональных функций; 3) на определенный интеграл и приложения. По мере изучения студенты решают свои варианты и отчитываются перед преподавателем.
БВК: Содержит РГР, в которую включено 10 заданий на каждый вид интегрирования.
Данное представление модуля не фиксировано и может быть изменено каждым преподавателем на его усмотрение. Предложенное составление является своего рода рекомендацией.
Литература:
1. Акимова И. В., Губанова О. М., Титова Е. И. Возможности реализации модульного подхода при обучении бакалавров педагогических специальностей на примере темы «Введение в алгебру логики»// Современные проблемы науки и образования. № 5.-2013 г.
2. Ермолаева Е. И. Систематизация математических знаний студентов строительных специальностей в процессе реализации модульного обучения [Текст]: Дис.... канд. пед. наук: 13.00.08/ Е. И. Ермолаева — Пенза, 2008. — 170 с.
3. Ермолаева Е. И. Особенности реализации модульного обучения в системе высшего образования //В мире научных открытий. 2010. № 4–5. С. 109–110.
4. Ермолаева Е. И. Проблемы усвоения математических знаний студентами технических вузов //Актуальные проблемы гуманитарных и естественных наук. 2010. № 7. С. 270–272.
5. Жидкова А. Е., Титова Е. И. Рекомендации для преподавателей по использованию технологии модульного обучения// Молодой ученый. 2014. № 2 (61). С. 756–757.
6. Крымская Ю. А., Титова Е. И., Ячинова С. Н. Профессиональная подготовка строителей через решение математических задач// Современные проблемы науки и образования, № 2, 2014.