Направленное использование стартовых культур позволяет получить готовый продукт стабильного качества с минимальными финансовыми затратами. Действие стартовых культур связано с образованием специфических биологически активных компонентов, среди которых органические кислоты, ферменты и другие [1, с. 37, 2, с. 65]. Эти компоненты способствуют улучшению органолептических и санитарно-микробиологических показателей сырокопченых колбас, а также позволяют ускорить процесс ферментации мясного сырья, что положительно сказывается на сроках производства сырокопченых колбас [3, с. 76, 4, с. 172].
Руководствуясь экспериментальными данными по воздействию электромагнитного поля низких частот (ЭМП НЧ) на микрофлору [3, с. 76, 5, с. 43, 6, с. 75, 7, с. 226], установлено, что ЭМП НЧ способно интенсифицировать рост микрофлоры. На сегодняшний день нет четких данных по изучению влияния ЭМП НЧ на стартовые культуры и на динамику физико-химических, биологических и микробиологических процессов, характерных для технологии производства сырокопченых колбас.
Для определения степени действия на модельную систему вносимых обработанных ЭМП НЧ стартовых культур нами был использован модельный фарш, состоящий из 60 % говядины охлажденной и 40 % свинины охлажденной. Мясное сырье предварительно измельчали на волчке с диаметром решетки d=3 мм. В качестве экспериментальной микрофлоры мы использовали стартовые культуры Альми 2 фирмы Almi. В соответствии с рекомендациями фирмы и инструкции по применению стартовых культур Альми 2, стартовые культуры для контрольной группы активировались теплой водой в количестве 100 см3 с температурой 25–30°С, оставляли стоять на 30 мин для ее полного растворения, по истечении указанного времени вносили в модельный фарш.
Для опытного образца стартовые культуры Альми 2 активировали следующим образом: стартовые культуры растворяли в теплой воде в количестве 100 см3 с температурой 25–30°С, оставляли на 30 минут для полного растворения (так, как это рекомендовано производителем), после чего обрабатывали ЭМП НЧ с частотой 45 Гц в течение 60 минут. После активации растворенные стартовые культуры вносили в фарш и перемешивали [6, с. 75].
О степени гидролиза мясного сырья стартовыми культурами можно судить не только по образованию водорастворимых белков, но и по количественному образованию свободных аминокислот [8, с. 47, 9, с. 400]. В таблице 1 представлен аминокислотный состав биомодифицированных модельных фаршей.
Таблица 1
Аминокислотный состав модельных фаршей
Наименование аминокислот |
Содержание мг/100 г продукта |
|||
Контроль |
Опыт |
|||
До биомоди-фикации |
После биомоди-фикации |
До биомоди-фикации |
После биомоди-фикации |
|
Лизин |
14,87 |
15,38 |
14,87 |
16,00 |
Фенилаланин |
11,02 |
11,37 |
11,02 |
11,84 |
Лейцин |
20,45 |
21,10 |
20,45 |
21,97 |
Изолейцин |
10,11 |
10,44 |
10,11 |
10,87 |
Цистин |
2,11 |
1,66 |
2,11 |
1,73 |
Метионин |
5,06 |
5,26 |
5,06 |
5,47 |
Валин |
13,41 |
13,86 |
13,41 |
14,43 |
Тирозин |
10,47 |
10,87 |
10,47 |
17,4 |
Пролин |
4,83 |
4,97 |
4,83 |
5,18 |
Аргинин |
8,98 |
11,02 |
8,98 |
11,82 |
Аланин |
42,76 |
44,43 |
42,76 |
46,20 |
Треонин |
10,86 |
11,25 |
10,86 |
11,71 |
Гистидин |
16,52 |
17,92 |
16,52 |
18,51 |
Глицин |
12,11 |
12,72 |
12,11 |
13,20 |
Серин |
12,55 |
12,98 |
12,55 |
13,50 |
Глутаминовая кислота |
7,50 |
64,2 |
7,50 |
66,8 |
Аспарагиновая кислота |
- |
8,33 |
- |
8,67 |
Увеличение свободных аминокислот связано с разрушением белков ферментами микроорганизмов. Полученные данные свидетельствуют о более эффективной биомодификации модельного фарша стартовыми культурами, подвергнутыми активации ЭМП НЧ.
В дальнейшей работе нами было изучено влияние активированных ЭМП НЧ и не активированных стартовых культур на модельный фарш. В ходе работы отслеживалась динамика роста микрофлоры, скорость снижения рН и количество молочной кислоты. Результаты исследования динамики роста микрофлоры представлены в таблице 2.
Таблица 2
Динамика роста микрофлоры
15 г / 100 кг + ЭМП НЧ |
20 г / 100 кг |
8,9×105 |
1,9×105 |
2,6×106 |
2,5×105 |
9,6×106 |
1,0×106 |
4,2×107 |
5,2×106 |
8,3×107 |
7,9×106 |
Анализ приведенных данных свидетельствует о более быстром росте микрофлоры в образце фарша опытной группы стартовых культур по отношению к контрольной, такое быстрое развитие микрофлоры способствует быстрой ферментации и снижению рН фарша до необходимых значений.
Результаты исследования скорости снижения рН фарша под действием активированных ЭМП НЧ стартовых культур Альми 2 представлен на рисунке 1.
Рис. 1. Динамика изменения рН модельного фарша
В производстве сырокопченых колбас об окончании процесса осадки судят по уплотнению батона, изменению окраски и снижению рН колбас до значения 5,4–5,3. При изучении полученных данных учитывали желаемый уровень рН фарша [10, с. 175].
Анализ полученных в результате исследований данных свидетельствует о быстром снижение рН опытной группы. На первом этапе измерения разница составила 0,1 по отношению опыта к контролю и на 0,2 и 0,1 по отношению к начальному показателю рН. В опытной группе желаемое значение рН в 5,4 было достигнуто через 24 часа выдержки модельного фарша при температуре 11±1 оС. В контрольной группе желаемое значение рН 5,35 было достигнуто через 48 часов. При сопоставлении скорости роста микрофлоры и скорости понижения рН фарша можно сделать следующий вывод: при увеличении количества микрофлоры скорость понижения рН фарша увеличивается. Это свидетельствует о резком увеличении количества молочнокислых микроорганизмов и, как следствие, активное накопление молочной кислоты [11, с. 50, 12, с. 20, 13, с. 167].
Результат исследования содержания молочной кислоты представлен на рисунке 2.
Рис. 2. Динамика изменения количества молочной кислоты в модельном фарше
На рисунке 5 показана динамика роста молочной кислоты в исследуемых образцах. Опытный образец уже через 12 часов выдержки модельного фарша по количеству молочной кислоты превышал контрольный на 10 %. По истечении пяти дней выдержки разница составила 17,5 %, что свидетельствует о более быстром накоплении молочной кислоты в опытной группе.
Выводы. Установлено, что обработка стартовых культур препарата Альми-2 частотой 45 Гц в течение 60 мин, стимулирует их рост: при внесении обработанных ЭМП НЧ стартовых культур в модельный фарш существенно снижается рН фарша — с 5,85 до 4,95, увеличивается количество аминокислот на 6,8 %.
Литература:
1. Нестеренко, А. А. Технология ферментированных колбас с использованием электромагнитного воздействия на мясное сырье и стартовые культуры / А. А. Нестеренко // Научный журнал «Новые технологии». — Майкоп: МГТУ. — 2013. — № 1 — С. 36–39.
2. Нестеренко, А. А. Применение стартовых культур в технологии производства ветчины / А. А. Нестеренко, Ю. А. Зайцева // Вестник Казанского государственного аграрного университета. — 2014. — № 1(31) — С. 65–68.
3. Нестеренко, А. А. Влияние электромагнитного поля на развитие стартовых культур в технологии производства сырокопченых колбас / А. А. Нестеренко // Вестник Мичуринского государственного аграрного университета. — Мичуринск, — 2013. — № 2 — С. 75–80.
4. Потрясов Н. В. Разработка условий получения функциональных продуктов с использованием консорциумов микроорганизмов [Текст] / Н. В. Потрясов, Е. А. Редькина, А. М. Патиева // Молодой ученый. — 2014. — № 7. — С. 171–174.
5. Нестеренко, А. А. Электромагнитная обработка мясного сырья в технологии производства сырокопченой колбасы // Наука Кубани. — 2013. — № 1. — С. 41–44.
6. Нестеренко, А. А., Пономаренко, А. В. Использование электромагнитной обработки в технологии производства сырокопченых колбас // Вестник Нижегородского государственного инженерно-экономического института. — 2013. — № 6 (25). — С. 74–83.
7. Нестеренко, А. А. Изучение действия электромагнитного поля низких частот на мясное сырье [Текст] / А. А. Нестеренко, К. В. Акопян // Молодой ученый. — 2014. — № 4. — С. 224–227.
8. Нестеренко, А. А. Посол мяса и мясопродуктов / А. А. Нестеренко, А. С. Каяцкая // Вестник НГИЭИ. — 2012. — № 8. — С. 46–54.
9. Патиева, А. М. Обоснование использования мясного сырья свиней датской селекции для повышения пищевой и биологической ценности мясных изделий / А. М. Патиева, С. В. Патиева, В. А. Величко, А. А. Нестеренко // Труды Кубанского государственного аграрного университета, Краснодар: КубГАУ, — 2012. — Т. 1. — № 35 — С. 392–405.
10. Потрясов, Н. В. Изучение свойств готовой продукции функционального направления с использованием консорциумов микроорганизмов [Текст] / Н. В. Потрясов, Е. А. Редькина, А. М. Патиева // Молодой ученый. — 2014. — № 7. — С. 174–177.
11. Нестеренко, А. А. Биологическая ценность и безопасность сырокопченых колбас с предварительной обработкой электромагнитным полем низких частот стартовых культур и мясного сырья / Нестеренко А. А., Акопян К. В. // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. — Краснодар: КубГАУ, 2014. — № 05(099). — С. — IDA [article ID]: 0991405052. — Режим доступа:http://ej.kubagro.ru/2014/05/pdf/52.pdf, 0,875 у.п.л.
12. Нестеренко, А. А. Влияние активированных электромагнитным полем низких частот стартовых культур на мясное сырье / Нестеренко А. А., Горина Е. Г. // Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета (Научный журнал КубГАУ) [Электронный ресурс]. — Краснодар: КубГАУ, 2014. — № 05(099).– С. — IDA [article ID]: 0991405053. — Режим доступа: http://ej.kubagro.ru/2014/05/pdf/53.pdf, 1,063 у.п.л.
13. Зайцева, Ю. А. Новый подход к производству ветчины [Текст] / Ю. А. Зайцева, А. А. Нестеренко // Молодой ученый. — 2014. — № 4. — С. 167–170.