В статье автор предлагает использовать на уроках физики термометр, который может быть самостоятельно изготовлен учителем физики. Измеритель представляет собой аналоговый датчик температуры, сопрягаемый с компьютером посредством десятиразрядного аналого-цифрового преобразователя, который также может быть изготовлен учителем. Этот компьютерный измеритель (виртуальный термометр) позволяет демонстрировать учащимся на экране значение температуры в данный момент времени и график зависимости температуры от времени.
Ключевые слова: виртуальный прибор, датчик температуры, термометр, аналого-цифровой преобразователь, АЦП, виртуальный измеритель температуры.
В процессе обучения физике применение измерительного комплекса на базе вычислительной техники приводит к повышению наглядности и эффективности обучения. Такой комплекс, как правило, включает датчики измеряемых физических величин, компьютер, устройство сопряжения датчиков с компьютером и программное обеспечение [2; 5; 6; 7].
Наиболее значимой частью любого виртуального измерителя с аналоговым датчиком является устройство сопряжения, преобразующее аналоговый (непрерывный) сигнал в цифровой (дискретный) сигнал. Такое устройство называется аналого-цифровым преобразователем (АЦП). Практически любой аналоговый датчик, на выходе которого получается электрическое напряжение, пропорциональное измеряемой этим датчиком физической величине, может быть согласован с АЦП. При этом напряжение на выходе датчика не должно превышать максимальное входное напряжение АЦП [2; 7].
В своей практике мы часто используем десятиразрядный АЦП, собранный на базе микросхемы TLC1549IP, который может применяться как устройство сопряжения многих аналоговых датчиков с компьютером [2]. Входное напряжение такого АЦП не превышает 5 В, а точность измерений напряжения равна примерно 0,005 В. Прибор можно подключать к физическому COM-порту компьютера (последовательному порту RS232) или к USB-шине компьютера с помощью адаптера USB-COM (виртуальному COM-порту) [2; 9].
Аналоговый датчик температуры может быть реализован на тиристоре (рис. 1). Возможно применение в такой схеме вместо тиристора простых и недорогих микросхем типа LM335.
Рис. 1. Принципиальная схема датчика температуры на тиристоре
Микросхема типа LM335 может рассматриваться как стабилитрон с температурным коэффициентом 10 мВ/К [1, с. 109; 8]. Принципиальная схема аналогового датчика температуры на базе микросхемы LM335Z представлена на рис. 2 [8].
Рис. 2. Принципиальная схема аналогового датчика температуры на микросхеме LM335Z
Максимальное выходное напряжение датчика температуры равно примерно 5 В. Соответствие напряжения на выходе датчика измеряемой температуре следующее: 0 В — 0 К (-273°C), 5 В — 500 К (+227°C). Рабочий диапазон температур датчика находится в границах от -40°C до +100°C. Возможно использование вместо микросхемы серии LM335 другого элемента — микросхемы серии LM135, которая имеет рабочий диапазон от ‑50°C до +150°C. Для калибровки датчика в схему включен резистор R2 с сопротивлением 10 кОм. Питание устройства может осуществляться от обычной гальванической батареи или какого-то другого стабилизированного источника постоянного напряжения [8]. На рис. 3 показана настройка датчика (проводится с помощью подстроечного резистора R2). Образцовый термометр на этом рисунке не показан. Питание датчика осуществляется от батареи, мультиметр используется в качестве вольтметра для измерения напряжения на выходе датчика. В данном случае вольтметр показывает напряжение 2,96 В, что соответствует температуре 296 К или примерно 23°C.
Рис. 3. Аналоговый датчик температуры, мультиметр и батарея
Рис. 4. Датчик температуры, соединенный с АЦП
На рис. 4 показан датчик температуры, подключенный к АЦП, упомянутому в начале статьи. Для более ранних моделей компьютеров можно использовать другой АЦП, который предполагает подключение к LPT-порту компьютера (рис. 5). Для удобства мы обычно размещаем АЦП в защитном корпусе (рис. 6).
Рис. 5. АЦП для подсоединения к LPT-порту компьютера
Рис. 6. АПЦ в корпусе и аналоговый датчик
Программное обеспечение любого виртуального прибора должно иметь понятный и удобный для пользователя графический интерфейс. Для учебных виртуальных измерительных приборов удобнее создавать относительно небольшие программы, ориентированные на решение узкоспециальных измерительных задач. В этом случае пользователю программы предоставляется минимально необходимый вариант автоматизированного управления измерительной системой, что существенно облегчает его работу с ней: сокращает время подготовки прибора к работе, настройка системы не отвлекает от более важного процесса осмысления результатов измерений [3; 4; 8; 9].
Окно приложения, обеспечивающего работу с термометром, показано на рис. 7. Программа предназначена для работы с операционными системами Windows XP, Windows Vista и Windows 7. В окне приложения размещены: верхнее меню, включающее пункты «Файл», «Измерения», «Справка»; место для визуализации графика зависимости измеряемой температуры от номера измерения (времени); индикатор, показывающий текущее значение температуры; группа радиокнопок для выбора частоты измерений; управляющие кнопки «Пуск/Пауза» и «Сброс»; группа радиокнопок для выбора единицы измерения температуры; выпадающий список существующих на данном компьютере портов. Минимальная скорость проведения измерений температуры равна 1 измерению в час, максимальная — 100 измерений в секунду (1 измерение в 0,01 секунды). Это позволяет визуализировать на экране и анализировать процессы, текущие медленно, а также быстропротекающие процессы, связанные с изменением температуры.
Рис. 7. Окно приложения «Цифровой термометр»
Рис. 8. Экспериментальная установка
Ни рис. 8 показана функциональная схема измерительного комплекса с аналоговым датчиком температуры.
Литература:
1. Гелль П. Как превратить персональный компьютер в измерительный комплекс: Пер. с фр. — М.: ДМК Пресс, 2005. — 144 с.
2. Данилов О. Е. Аналого-цифровой преобразователь как базовый элемент учебного компьютерного измерительного комплекса с аналоговыми датчиками физических величин / О. Е. Данилов // Молодой ученый. — 2013. — № 4. — С. 114–119.
3. Данилов О. Е. Виртуальный прибор «Цифровой вольтметр» / О. Е. Данилов // Свидетельство о государственной регистрации программы для ЭВМ № 2011617600. — Заявка № 2011613163; зарегистр. в Реестре программ для ЭВМ 29.09.2011.
4. Данилов О. Е. Виртуальный прибор «Цифровой термометр» / О. Е. Данилов // Свидетельство о государственной регистрации программы для ЭВМ № 2013613107. — Заявка № 2013611137; зарегистр. в Реестре программ для ЭВМ 26.03.2013.
5. Данилов О. Е. Лабораторный практикум: Компьютерные измерения в молекулярной физике и термодинамике. Учебно-методическое пособие / О. Е. Данилов. — Глазов: ГГПИ, 2009. — 28 с.
6. Данилов О. Е. Применение компьютерных технологий в учебном физическом эксперименте / О. Е. Данилов // Молодой ученый. — 2013. — № 1. — С. 330–333.
7. Данилов О. Е. Создание компьютерного измерительного комплекса с аналоговыми датчиками для школьного кабинета физики / О. Е. Данилов // Дистанционное и виртуальное обучение. — 2013. — № 3. — С. 93–102.
8. Данилов О. Е. Учебный компьютерный термометр с аналоговым датчиком температуры / О. Е. Данилов // Актуальные проблемы математики, физики, информатики в вузе и школе: Материалы Всероссийской региональной научно-практической конференции, 25 марта 2011 г. — Комсомольск-на-Амуре: Изд-во АмГПГУ, 2011. — С. 209–213.
9. Учебные компьютерные измерительные приборы / О. Е. Данилов. — Электрон. дан. — Сайты Google, 2011. — Режим доступа: https://sites.google.com/site/dancommeter/home. — Загл. с экрана.