В статье приведены результаты исследования по изучению физико-химических характеристик госсиполовой смолы и её модифицированных форм. Современными физико-химическими методами определено, в составе госсиполовой смолы присутствуют полифенолы, жирные кислоты, углеводороды, азот- и фосфорсодержащие соединения, а также продукты превращения госсипола.
Ключевые слова: госсиполовая смола, термическая обработка, фракционный состав, инфракрасные спектры, жирные кислоты, кислотное число, полимер.
В процессе производства хлопкового масла и жирных кислот в зависимости от технологии и способов выделения основных продуктов образуется множество вторичных продуктов и отходов. К таким отходам относится госсиполовая смола.
Состав и физико-химическая характеристика госсиполовой смолы по ОСТ 18–114:
1. Внешний вид — вязко-текучая масса
2. Цвет — от темно-коричневого до чёрного
3. Кислотное число, мг КОН — 50–100
4. Содержание золы, мас. % — 1,0–1,2
5. Содержание влаги и летучих веществ, % — до 4
6. Растворимость в ацетоне, мас. % –70–80
7. Удельная масса, г/см3–0,98–0,99
8. Число омыления, мг КОН — 80–130
Состав и свойства госсиполовый смолы зависят от качества исходного сырья, соблюдения технологических режимов разложения жиров, глубины дистилляции полученных жирных кислот и других факторов. В работе была использована госсиполовая смола Ургенчского масложиркомбината, получающаяся в результате дистилляции жирных кислот при температуре 220–2300С, содержащая в своём составе от 40 до 50 % продуктов конденсации, полимеризации и продуктов взаимодействия госсипола.
Термическая обработка образцов госсиполовый смолы проводилась с целью расшифровки фракционного состава и определения физико — химических свойств полученных фракций.
Фракционирование фиксировалось по началу и окончанию температуры кипения каждой фракции. По окончании перегонки каждой фракции наблюдался скачок температуры в среднем на 10–150С (таблица 1).
Таблица 1
Фракционный состав госсиполовой смолы при термообработке
№ фракции |
Температура, 0С |
Внешние характеристики |
рН |
Содержание от общей массы, % |
1 |
100–110 |
б/ц жидкость без запаха |
6,5 |
13–15 |
2 |
110–140 |
Коричневая жидкость с резким запахом |
4,5 |
6–8 |
3 |
140–170 |
светло-желтая жидкость с резким запахом |
6,0 |
3–5 |
4 |
170–240 |
светло-желтая жидкость с резким запахом |
6,0 |
1–3 |
Остаток после термической обработки |
черное твердое вещество |
- |
72–74 |
Природу химических соединений и функциональных групп, входящих в состав полученных фракций, изучали с помощью инфракрасных спектров [1]. По внешним признакам и полученным данным фракция № 1, в основном, состоит из воды, образованной в результате конденсации острого пара, используемого в технологии транспортировки госсиполовой смолы по заводским трубопроводам.
Инфракрасные спектры фракций госсиполовой смолы. В ИК-спектрах, полученных фракций, в основном, наблюдаются полосы поглощения валентных и деформационных колебаний связей С-Н. В высокочастотной области найдены три интенсивные полосы поглощения. Колебательные частоты, найденные в этих спектрах, приведены в таблице 2 и рисунке 1.
Таблица 2
Основные колебательные частоты в ИК- спектрах фракций госсиполовой смолы
№ фракции |
Частота, см |
Отнесение |
|
1,2 |
2970 |
υas (С-Н) в СНз — группах |
|
2920–2850 |
Υ (С-Н) в СН2 — группах |
||
2870 |
Υ (С-Н) в СН — группах |
||
2320–2350 |
υ (С=С), (С=N) |
||
1710 |
|||
1630 |
Υ (С=С) в циклических алкенах |
||
1450–1465 |
δ (CH2) |
||
1370–1290 |
δas (СН3) |
||
950–960 |
δ (=СН) транс-изомер в циклических алкенах |
||
710–720 |
δ (=СН) цис-изомер в циклических алкенах |
||
3,4 |
2960 |
υas (С-Н) в СН3 — группах |
|
2920–2850 |
Υ (С-Н) в СН3 — группах |
||
2320–2330 |
υ (С=С), (С=N) |
||
1450–1465 |
|||
1710 |
δ (CH2) |
||
1370 |
δas (СН3) |
||
950 |
δ (=СН) транс-изомер в циклических алкенах |
||
710–720 |
Δ (=СН) цис-изомер в циклических алкенах |
||
Черный твердый остаток, после термообработки |
3420–2840 |
υ(NH2), υ(СN) в пиридиновых соединениях |
|
2905. |
υ(СН) в метиленовых группах |
||
1580 -1590 |
Υ(С-С) в замещенных бензолах |
||
1440–1460 |
Υ(С=С) в замещенных этиленах |
||
1360–1370 |
Υ(С=С) в замещенных этиленах |
||
1100 |
d (кольцо) |
||
800–850 |
d (кольцо) |
||
Рис. 1. ИК-спектры термообработанной госсиполовой смолы
Полоса около 2960–2970 см-1 относится к симметричным валентным колебаниям связей С-Н метильных групп. Частоты валентных колебаний С-Н метиленовых групп обнаруживаются в области 2850–2920 см-1. Перегиб средней интенсивности около 2870 см-1 относится к колебаниям С-Н связей в СН — группах. По интенсивности этих полос можно судить об относительных количествах метильных, метиленовых и СН-групп.
Частоты деформационных колебаний метильных и метиленовых групп проявляются в виде малоинтенсивных полос около 1450–1460 см-1, 1370 см-1. Обычно в этой области спектра также наблюдается характерное поглощение диметильной группы — С(СН3)2 в виде дублета равной интенсивности [2]. В приведенных спектрах такое поглощение не найдено, что свидетельствует об отсутствии диметильной группы в исследуемых веществах. В средней части спектра найдено слабое поглощение с частотой около 2320–2350см-1, которое соответствует колебаниям связей С≡С и С≡N. Слабая интенсивность этой полосы указывает на наличие незначительных количеств нитрильных соединений во фракциях. В спектре фракции № 2 обнаружена интенсивная полоса поглощения с максимумом около 1710 см-1, что характерно для карбонильной группы (С=0) альдегидов и кетонов, а также димеризованных карбоновых кислот. По всей вероятности, в исследуемых фракциях карбоновые кислоты отсутствуют, так как в спектрах не обнаружена полоса поглощения ОН-групп. Значение частоты валентного колебания связи С=0 (1710см-1) свидетельствует об отсутствии циклических кетонов и альдегидов. Отсутствие полос средней интенсивности в области 1000–1280 см-1 и 1020–1080см-1, характеризует отсутствие эфирных групп в исследуемых соединениях.
Таким образом, во фракции № 2 содержатся примерно в равном количестве метильные, метиленовые, альдегидные и кетонные группы. На основе данных ИК-спектров можно предположить следующие виды соединений:
Спектры фракций № 3 и № 4 имеют аналогичный вид. Так, обнаружены интенсивные полосы поглощения в области 2800–3000 см-1, обусловленные валентными колебаниями связей С-Н. В отличие от спектра фракции № 2, здесь практически отсутствует полоса поглощения карбонильной группы (1710 см-1), относящаяся к альдегидам и кетонам. В области 1300–1600 см-1 и 700–1000 см-1 обнаружены малоинтенсивные полосы поглощения. В области 1580–1630 см-1 и 700–970 см-1 наблюдаются полосы поглощения, характерные для циклических углеводородов типа:
В спектрах ароматических углеводородов в области 1400–1500 см-1, 1580 1600 см-1 и 650–900 см-1 проявляются умеренно интенсивные линии поглощения, обусловленные колебаниями бензольных колец. Такие колебания в полученных спектрах не обнаружены, т. е. в этих фракциях отсутствуют ароматические соединения. Вероятно, эти фракции состоят из метилзамещенных циклических углеводородов, которые имеют следующие температуры кипения: 179,5°С; 185°С; 160–180°С [2].
После термообработки госсиполовой смолы до температуры 240–260°С остается черное твердое вещество, хорошо растирающееся в порошок. Этот остаток хорошо растворим в ацетоне, но не растворяется в воде, полярных и неполярных органических растворителях.
В высокочастотной области спектра наблюдаются две группы полос поглощения. Полосы поглощения около 2905 см-1 и 2840 см-1, также как у предыдущих спектров, обусловлены валентными колебаниями связей С-Н в метиленовых цепочках. Можно отметить, что в данном спектре отсутствуют полосы поглощения связей С-Н в метильных группах.
Широкую полосу около 3420 см-1 можно отнести к валентным колебаниям связей N-Н в аминогруппах или С-Н связей в замещенных соединениях пиридина. В низкочастотной области спектра имеются несколько малоинтенсивных широких полос поглощения. Поглощения около 1580 см-1 показывают на замещение ароматических и пиридиновых соеди-нений смолы. Так, полосы при 1590 см-1, 1360–1370 см -1 и 1100–800 см-1 обусловлены колебаниями замещенных ароматических и пиридиновых колец. Многие ароматические и пиридиновые соединения имеют высокую температуру кипения и большинство из них являются твердыми веществами.
Таким образом, можно предположить следующее:
- фракция № 2 содержит изомерные углеводороды, альдегиды и кетоны ациклического и циклического строения. Отсутствуют соединения с эфирными и амидными группами;
- во фракциях № 3 и № 4 отсутствуют альдегиды и кетоны, но имеются метилзамещенные циклические углеводороды с двойными связями;
- черный твердый остаток после термической обработки госсиполовой смолы, в основном, состоит из замещенных производных бензола и пиридина.
Присутствие неионизированных карбоксильных групп подтверждается полосами около 1730–1700 см-1. Расщепление этой полосы 1720–1730, 1700 см-1 указывает на присутствие димеризованных карбоновых кислот через водородные связи. Наличие в спектре частот при 1630, 1605 см-1 указывает на содержание в составе кислот диеновых углеводородных радикалов линейного и циклического строения. Полосы поглощения в низкочастотной области 1270–1100 см-1, характеризуются колебаниями спиртовых, альдегид-ных и эфирных групп. Поглощение в области 1000–100 см-1 указывает на присутствие в составе госсиполовой смолы нежировых примесей (фосфатиды, минеральные фосфаты и другие).
Таким образом, полученные данные позволяют расширить область применения госсиполовой смолы. Определено, что в составе госсиполовой смолы присутствуют полифенолы, жирные кислоты, углеводороды, азот- и фосфорсодержащие соединения, а также продукты превращения госсипола. Присутствие в ее составе также соединений нафталинового ядра делает продукты модификации госсиполовой смолы термо-, хемо- и радиационно-устойчивыми, а присутствие фенольных гидроксилов и альдегидной группы — реакционноспособными с высокими комплексообразующими свойствами. Она во многих отношениях с успехом может заменить дорогостоящие антикоррозионные покрытия, а также нефтяной битум, дефицит которого ощущается с каждым годом.
Литература:
1. Миронов В. А., Янковский С. А. Спектроскопия органических соединений. — Л.: Химия 1985. — 232 с.
2. Никаниси К. Инфракрасные спектры и строение органических соединений. — М.: Мир, 1965. –180 с.