Исследовано влияние карбонатного шлама, образующегося при химической очистке воды для паровых котлов, и измельченного отсева дробления известнякового щебня на свойства шпаклевок. Установлено, что из-за высокой водопотребности шлам может применяться в составах шпаклевок вместо карбонатной муки только при использовании пластифицирующих добавок.
Ключевые слова:шпаклевка, портландцемент, карбонатная мука, отход очистки воды, карбонатный шлам, суперпластификатор.
Наиболее перспективными отходами для использования в технологии строительных материалов считаются дисперсные минеральные отходы [1–4]. Это связано с тем, что во многих отраслях промышленности строительных материалов одним из энергоемких технологических переделов является измельчение минеральных сырьевых материалов.
Однако часто свойства отходов не соответствуют требованиям, предъявляемым к кондиционному сырью для строительных материалов. В связи с этим такие дисперсные минеральные отходы обычно используются в небольшом количестве как «разбавители» традиционных вяжущих материалов для экономии более дорогих компонентов. Иногда в процессе такой утилизации преимущества использования отходов становятся очевидными после довольно продолжительной эксплуатации модифицированных материалов. Примером может служить применение в технологии бетона микрокремнезема и летучей золы от сжигания угля [2, 5, 6]. Эти отходы вводились в состав бетона в небольших количествах для снижения его стоимости. Однако опыт производства и эксплуатации бетонов с такими добавками показал, что заметно улучшаются многие характеристики бетона, особенно при их использовании в технологии ВНВ [3, 7]. В последнее время применение этих материалов, наряду с использованием суперпластификаторов (СП), обеспечило прогресс в технологии бетона, что позволило повысить характеристики цементных строительных материалов [1–6].
Одним из минеральных дисперсных отходов, применение которого при превышении дозировок более 10...15 % не дает положительного эффекта в технологии строительных материалов на основе портландцемента, является карбонатный шлам — отход химической очистки воды для паровых котлов. Основной его компонент — карбонат кальция. В значительно меньших количествах содержатся карбонат магния и оксид железа. Этот отход образуется в виде суспензии, которая после естественной сушки в шламонакопителях до влажности 40...50 %, вывозится на полигон захоронения промышленных отходов. Основные объемы этого отхода образуются на тепловых электростанциях.
Как показывает зарубежный и отечественный опыт [3, 6, 8, 9], применение измельченных природных карбонатных материалов в цементах эффективно не только с точки зрения экономии клинкера. Использование этих материалов повышает водоудерживающую способность цемента, снижает усадку и ползучесть цемента. Применение карбонатного шлама в цементных материалах приводит к ряду негативных эффектов: прежде всего, значительно повышается водопотребность и снижается прочность.
Причиной этих эффектов является высокая дисперсность карбонатного шлама. Удельная поверхность высушенного шлама зависит от его степени измельчения. Если шлам измельчить до удельной поверхности по прибору ПСХ-2 до 500...600 м2/кг, то при такой поверхности, при водотвердом отношении около единицы, шлам с водой представляет собой структурированную пасту, а отход камнедробления природной карбонатной породы со сходным химическим составом при том же водотвердом отношении — подвижную суспензию со значительным водоотделением. Таким образом, реальная дисперсность шлама значительно выше. Большое повышение водопотребности шлама в сравнении с карбонатной пылью объясняется, по нашему мнению, пористой структурой его частиц. Эти частицы представляют собой конгломераты мельчайших химически осажденных кристалликов, соединенных между собой связями с различной прочностью. Такие конгломератные частицы обладают развитой удельной поверхностью, которую точно можно оценить по сорбции азота или углекислого газа [6]. Низкая прочность частиц является причиной снижения прочности цементного камня с добавкой шлама в сравнении с цементным камнем с добавкой природного пылевидного карбонатного отхода камнедробления.
Нами были проведены исследования возможности снижения негативных эффектов при использовании карбонатного шлама в качестве наполнителя цементных систем. В качестве модификатора этих систем был исследован отечественный суперпластификатор С-3.
Исследования проводились на различных шпаклевочных составах, в которых карбонатная мука является обязательным компонентом. В экспериментах карбонатная мука заменялась высушенным карбонатным шламом. В качестве базовых составов были приняты составы, приведенные в проспекте [10]. Исследования проводились на составах для финишной шпаклевки (составы 1, 4), ремонтной шпаклевки (составы 2, 5) и составах для заделки неровностей (составы 3, 6). Составы 1, 2, 3 приготавливались с использованием карбонатной муки, а составы 4, 5, 6 — с применением карбонатного шлама. Расходы компонентов смесей приводятся в таблице.
Составы исследуемых материалов
Номер состава |
Расход компонентов смеси, % |
|||||
портландцемент |
гашенная известь |
известняковая мука |
кварцевый песок фр. 0,1…0,3 мм |
кварцевый песок фр. 0,3…0,4 мм |
карбонатный шлам |
|
1 |
40 |
5 |
55 |
- |
- |
- |
2 |
35 |
5 |
10 |
50 |
- |
- |
3 |
20 |
- |
10 |
15 |
55 |
- |
4 |
40 |
5 |
- |
- |
- |
55 |
5 |
35 |
5 |
- |
50 |
- |
10 |
6 |
20 |
- |
- |
15 |
55 |
10 |
Зависимость консистенции смесей (расплыв конуса на встряхивающем столике по ГОСТ 310.4–81 «Цементы. Методы определения предела прочности при изгибе и сжатии») от расхода воды приводится на рисунке.
Рис. Зависимость консистенции различных видов шпаклевок от водоцементного отношения
Как видно из рисунка, замена карбонатной муки на карбонатный шлам во всех составах приводит к значительному повышению водопотребности смесей и соответственно снижению прочности. Введение в составы суперпластификатора С-3 в количестве 0,7 % от массы дисперсных материалов значительно снижает расход воды во всех смесях. Наибольшее снижение водопотребности отмечено в составах с карбонатным шламом, особенно при его высоком расходе, тем не менее водопотребность в таких смесях выше, чем в составах с традиционным наполнителем.
Прочностные характеристики непластифицированных составов с карбонатным шламом ниже, чем у составов с традиционным наполнителем, даже при равных расходах воды, в пластифицированных — показатели прочности сближаются.
Применение СП в составах с высокодисперсными минеральными отходами эффективно, так как это позволяет получить цементное тесто с более однородным распределением минеральных частиц. В непластифицированных системах частицы объединены в микроконгломераты.
Таким образом, физико-химический процесс диспергирования частиц микроконгломератов с помощью суперпластификатора СП в агрегированных минеральных системах является чрезвычайно эффективным технологическим приемом при утилизации высокодисперсных агрегированных материалов. Из-за высокой водопотребности шлам может использоваться в составах шпаклевок вместо карбонатной муки только при использовании пластифицирующих добавок.
Литература:
1. Ozawa, К. Development of high performance concrete based on the durability design of concrete structures / К. Ozawa, et. al. // Proceedings of the second East-Asia and Pacific Conference on Structural Engineering and Construction. -1999. — Vol. 1. — P.445–450.
2. Кошкин А. Г., Коровкин М. О., Уразова А. А., Ерошкина Н. А. Исследование эффективности добавки на основе микрокремнезёма // Современные научные исследования и инновации. 2014. № 12–1 (44). С. 159–162.
3. Коровкин М. О. Эффективность суперпластификаторов и методология ее оценки / М. О. Коровкин, В. И. Калашников, Н. А. Ерошкина; М-во образования и науки Российской Федерации, Федеральное гос. бюджетное образовательное учреждение высш. проф. образования «Пензенский гос. ун-т архитектуры и стр-ва». Пенза, 2012. — 144 с.
4. Суздальцев, О. В. Новые высокоэффективные бетоны / О. В. Суздальцев, В. И. Калашников, М. Н. Мороз, Г. П. Сехпосян // Новый университет. Серия: Технические науки. 2014. № 7–8 (29–30). С. 44–47.
5. Калашников В. И. Высокоэкономичный композиционный цемент с использованием золы-уноса / В. И. Калашников, Е. А. Белякова, О. В. Тараканов, Р. Н. Москвин // Региональная архитектура и строительство. — 2014. — № 1(18). — С. 24–29.
6. Наука о бетоне: физико-химическое бетоноведение / В. Рамачандран, Р. Фельдман, Дж. Бруен. — М.: Стройиздат, 1986. — 287 с.
7. Коровкин М. О. Исследование эффективности суперпластификатора С-3 в вяжущем низкой водопотребности / М. О. Коровкин // Строительство и реконструкция. 2011. № 2. С. 84–88.
8. Тарасеева, Н. И. Роль безотходных технологий в расширении сырьевой базы для получения эффективных модифицирующих добавок и активных наполнителей в цементные растворы и бетоны / Н. И. Тарасеева, А. В. Воскресенский, А. С. Тарасеева // Новый университет. Серия: Технические науки. 2014. № 10 (32). С. 90–93.
9. Коровкин М. О., Шестернин А. И., Ерошкина Н. А. Влияние доломитовой муки на свойства растворной составляющей бетона // Современные научные исследования и инновации. 2014. № 12–1 (44). С. 132–136.
10. Добавки для производства сухих строительных смесей: проспект фирмы «Еврохим -1».