Рассмотрены основные принципы создания и применения новой высокой технологической разновидности бетонов. Показаны основные преимущества этих материалов.
Ключевые слова: самоуплотняющийся бетон, суперпластификатор, тонкий наполнитель, дисперсные отходы промышленности.
Концепция самоуплотняющегося бетона была предложена японскими специалистами в конце 80-х годов XX века [1]. Основной целью при разработке этой высокотехнологичной разновидности бетона было получение высококачественного материала, не требующего значительных трудозатрат для укладки и уплотнения бетонной смеси [2]. Этот фактор сыграл основную роль быстрого развития технологии самоуплотняющихся бетонов в начале 90-х годов не только в Японии, но и других промышленно развитых стран мира США, Швеции, Германии, Франции, которые испытывали дефицит квалифицированной рабочей силы в строительной отрасли.
Основополагающие исследования по самоуплотняющимся бетонам были выполнены в конце 80-х годов К. Ozawa и сотрудниками Токийского университета [3]. В соответствии с концепцией самоуплотняющегося бетона [2] он должен удовлетворять следующим требованиям: бетонная смесь способна уплотняться и течь через участки с высокой концентрацией арматуры без вибрации; в уложенном или твердеющем бетоне не должны появляться начальные дефекты; затвердевший бетон должен обладать высокой стойкостью к внешним факторам.
Создание таких бетонов стало возможным благодаря внедрению в технологии бетонов суперпластификаторов и микрокремнезема. Однако в полной мере идея самоуплотняющегося бетона была воплощена после создания японскими учеными нового поколения суперпластификаторов на основе поликарбоксилатных соединений [2].
Механизм действия этих суперпластификаторов основан не только на электростатическом отталкивании, но и на стерическом эффекте [4]. В структуре молекул суперпластификаторов имеются длинные боковые ответвления [4], которые обеспечивают диспергирование частиц цемента. Такие суперпластификаторы характеризуются более продолжительным пластифицирующим эффектом при более низких дозировках.
Кроме применения новых, более эффективных суперпластификаторов, для обеспечения самоуплотнения используются [5] следующие технологические приемы: снижается расход крупного заполнителя и водовяжущее отношение, при этом максимально повышается дозировка суперпластификатора.
Эффект самоуплотнения достигается за счет снижения контактных взаимодействий между зернами крупного и мелкого заполнителя, что обеспечивается высоким объемным содержанием цементного теста. Однако повышение расхода цемента нежелательно не только по экономическим причинам. Бетоны с высоким содержанием вяжущего характеризуются высокими значениями деформаций усадки и ползучести, кроме того, повышенным тепловыделением при твердении, что может вызвать возникновение дефектов структуры бетона.
Получение бетонных смесей с большим содержанием цементного теста при умеренном расходе цемента возможно при замещении части вяжущего высокодисперсными минеральными материалами — микрокремнеземом, золой-уносом, метакаолином, каменной мукой [6, 7, 8] или другими дисперсными минеральными промышленными отходами [9–11]. Замена части цемента позволяет получить текучее цементное тесто без седиментации, водоотделения и расслоения литой бетонной смеси.
Обычные бетоны включают в свой состав минимально три необходимых компонента — цемент, воду и заполнитель. Совместное применение суперпластификатора и тонкого наполнителя (микрокремнезема и др.) позволило получить новые разновидности бетонов, которые в мировой строительной практике получили название высокопрочные бетоны (High Strength Concrete — HSC) и высококачественные бетоны (High-Performance Concrete — НРС). С учетом того, что для получения таких бетонов количество обязательных компонентов должно быть увеличено, такие бетоны считаются пятикомпонентными [6]. В связи с тем, что самоуплотняющиеся бетоны можно считать усовершенствованными высококачественными бетонами, принято говорить о них как о новой стадии развития пятикомпонентных бетонов [6].
По мнению [12] при производстве самоуплотняющихся бетонов необходимо преодолеть три противоречивых фактора: обеспечить высокую текучесть бетонной смеси, исключить ее расслаиваемость и достичь высокой прочности.
Для повышения характеристик самоуплотняющихся бетонов в их состав вводятся, кроме обязательных компонентов — суперпластификаторов и дисперсных материалов, различные высокоэффективные химические добавки, в частности модификаторы вязкости, замедлители схватывания, ускорители твердения. С целью предотвращения водоотделения и расслоения, кроме тонкого наполнителя, при необходимости в состав бетонной смеси вводятся добавки, повышающие вязкость цементного теста. Эти добавки производятся на основе модифицированной целлюлозы, гидролизованного крахмала, полиэтиленгликоля, природных биополимеров и др.
Реологические свойства самоуплотняющихся бетонных смесей значительно отличаются от свойств обычных бетонов. В связи с этим для проектирования состава бетона и контроля его свойств в лабораторных и производственных условиях необходимы специальные методы определения удобоукладываемости бетонной смеси. За сравнительно непродолжительный период исследования самоуплотняющихся бетонных смесей были созданы различные методы определения их свойств. К числу таких методов относят U-испытания (U-Test) [2], V-испытания (V-Funnel Test) [6], метод Оримета (Orimet test), L-испытания (L-box test), испытания с использованием стандартного конуса Адамса с блокирующим кольцом.
Использование исследователями, производителями и потребителями самоуплотняющихся бетонов различных методов привело к тому, что результаты определения удобоукладываемости, полученные такими методами, трудно сопоставить. В связи с этим созрела необходимость принятия гармонизированных стандартов, регламентирующих методики определения способности бетонной смеси к самоуплотнению. В качестве основной, вероятно, будет принята наиболее простая методика — стандартный конуса Адамса с блокирующим кольцом.
После создания методологии проектирования самоуплотняющихся бетонов в начале 90-х годов [1–3] и разработки методик определения их свойств стало возможным широкое применение этой разновидности бетона в строительной практике. В начале 90-х годов самоуплотняющийся бетон в Японии применялся только крупными строительными компаниями. Эго было связано с большими затратами на разработку технологии, текущий контроль качества. Доля самоуплотняющегося бетона в общем объеме бетона не превышала 1 %. Эта разновидность бетона рассматривалась как специальный бетон, применение которого оправданно на крупных объектах [2].
В промышленном масштабе самоуплотняющийся бетон впервые был применен в 1991 г. при сооружении преднапряженных железобетонных пилонов вантового моста [2]. Положительный опыт использования самоуплотняющегося бетона способствовал увеличению объемов его применения.
В качестве основных причин применения этого бетона называют [2]:
- сокращение сроков строительства;
- обеспечение надежного уплотнения, в том числе в густоармированных конструкциях сложной конфигурации;
- высокое качество бетонной поверхности;
- снижение трудоемкости, устранение шума и вибрации при укладке бетонной смеси.
Немаловажным фактором для расширения объемов производства самоуплотняющегося бетона следует считать применение в его составе дисперсных промышленных отходов, таких, как зола-унос, дисперсные отходов камнедробления, микрокремнезем и др.
Объемы производства самоуплотняющихся бетонов в мировой строительной практике постоянно возрастают. Самая высокая доля этих материалов в объеме производства бетонов приходится на страны с высокой производительностью труда. К примеру, в Дании объем производства самоуплотняющегося бетона составляет около 50 % от общего объема бетона в этой стране.
Самоуплотняющийся бетон — высокотехнологичный материал, его свойства в большей степени, чем для обычного бетона зависят от характеристик сырьевых материалов и точности их дозировки. Для получения материала с гарантированными свойствами необходим четко налаженный лабораторный контроль характеристик исходных материалов и готовой продукции.
Для эффективного применения самоуплотняющегося бетона необходимо учитывать, что его стоимость выше стоимости обычного бетона, и его использование оправданно там, где необходимы высокие темпы бетонирования, гарантированное уплотнение в густоармированных конструкциях, высокое качество поверхности.
Производство самоуплотняющегося бетона в условиях современного уровня развития отечественной строительной отрасли сдерживается низкой стоимостью рабочей силы в России; в структуре себестоимости продукции доля оплаты труда намного ниже, чем в промышленно развитых странах. Очевидно, что по этой причине, а также из-за неразвитости рынка дисперсных материалов и высокой стоимости суперпластификаторов зарубежного производства новый вид бетона не находит такого широкого применения, как в Европе, США и Японии. Тем не менее, в тех регионах, где ведется интенсивное строительство и наблюдается дефицит рабочей силы, в частности в Москве и Петербурге, имеется опыт применения самоуплотняющегося бетона. Вероятно, при подобных изменениях в объемах строительства и на рынке труда и в других регионах России эта разновидность бетона будет востребована.
Литература:
1. Kodama, Y. Current condition of self-compacting concrete. Cement Shimbun, No. 2304, Dec. 1997.
2. Оучи, М. Самоуплотняющиеся бетоны: разработка, применение и ключевые технологии // Бетон на рубеже третьего тысячелетия: труды 1-й Всерос. конф. по бетону и железобетону. — Москва, 2001.- С. 209–215.
3. Ozawa, К. Development of high performance concrete based on the durability design of concrete structures / К.Ozawa, et. al. // Proceedings of the second East-Asia and Pacific Conference on Structural Engineering and Construction. -1999. — Vol. 1. — P.445–450.
4. Sakai, E. Molecular Structure and Dispersion-Adsorption Mechanism of Comb-Type Superplasticizers Used in Japan / E. Sakai, K. Yamada, A. Ohta // Journal of Advanced Concrete Technology. 2003. 1(1). 16–25.
5. Оkamura H, et al. Mix-design for self-compacting concrete / H. Оkamura, et al. // Concrete Library of JSCE. -June 1995. — No. 25. -P.107–120.
6. Horst G. and Joerg R. Self compacting concrete — another stage in the development of the 5-component system of concrete // Betontechnische Berichte (Concrete Technology Reports), Verein Deutscher Zementwerke. — Dusseldorf, 2001. P. 39–48.
7. Калашников, В. И. Промышленность нерудных строительных материалов и будущее бетонов // Строительные материалы. 2008. № 3. С. 20–23.
8. Суздальцев, О. В. Новые высокоэффективные бетоны / О. В. Суздальцев, В. И. Калашников, М. Н. Мороз, Г. П. Сехпосян // Новый университет. Серия: Технические науки. 2014. № 7–8 (29–30). С. 44–47.
9. Тарасеева, Н. И. Роль безотходных технологий в расширении сырьевой базы для получения эффективных модифицирующих добавок и активных наполнителей в цементные растворы и бетоны / Н. И. Тарасеева, А. В. Воскресенский, А. С. Тарасеева // Новый университет. Серия: Технические науки. 2014. № 10 (32). С. 90–93.
10. Шестернин А. И., Козюра О. А., Коровкин М. О. Свойства тонкого наполнителя для бетона из лома железобетонный конструкций Актуальные вопросы строительства: материалы Междунар. науч.-техн. конф.: Ч. 1 — Саранск: Изд-во Мордовского гос. ун-та, 2008. — С. 238–242.
11. Замчалин М. Н., Коровкин М. О., Ерошкина Н. А. Выбор суперпластификаторов для самоуплотняющихся бетонов // Современные научные исследования и инновации. 2015. № 1 [Электронный ресурс]. URL: http://web.snauka.ru/issues/2015/01/46335 (дата обращения: 02.02.2015).
12. Калашников, В. И. Расчет составов высокопрочных самоуплотняющихся бетонов / В. И. Калашников / Строительные материалы. 2008. № 10. С. 4–6.