Распознавания для вариантных и инвариантных образов | Статья в журнале «Молодой ученый»

Отправьте статью сегодня! Журнал выйдет 28 декабря, печатный экземпляр отправим 1 января.

Опубликовать статью в журнале

Автор:

Рубрика: Информационные технологии

Опубликовано в Молодой учёный №9 (89) май-1 2015 г.

Дата публикации: 04.05.2015

Статья просмотрена: 1656 раз

Библиографическое описание:

Жетимекова, Г. Ж. Распознавания для вариантных и инвариантных образов / Г. Ж. Жетимекова. — Текст : непосредственный // Молодой ученый. — 2015. — № 9 (89). — С. 120-124. — URL: https://moluch.ru/archive/89/18080/ (дата обращения: 18.12.2024).

В статье рассматриваются вопросы распознавания для вариантных и инвариантных образов. А также такие вопросы как, выделение признаков с помощью моментов, приложение инвариантных моментов, логарифмически-полярные преобразования и дискретное преобразование Фурье. И предложен алгоритм для извлечения инвариантных признаков. Статья предназначена для специалистов занимающиеся вопросами распознавания образов.

Ключевые слова: распознавание образов, инвариантный образ, вариантный образ, преобразование, алгоритм, шаг.

 

Выделение признаков с помощью моментов

Распознавание геометрических образов независимо от позиции, ориентации и размера может быть достигнуто, используя инварианты моментов. Эти моменты единственным образом определяют кусочно-непрерывную функцию f (x, y), которая имеет ненулевые значения только в конечной части плоскости XY. Если f (x, y) — числовое отображение в двумерном пространстве, то моменты порядка (p+q) могут быть

 для p, q = 0, 1, 2, …                                                  (1)

Центральные моменты могут быть выражены как

                                                               (2)

где xc = M10 / M00, yc = M01/ M00

Нормализованные центральные моменты Npq могут быть определены как

Npq = mpq / (m00)g                                                                                                             (3)

Где, g = (p+q)/2 +1, для p+q = 2, 3, …                                                                         (4)

Набор семи моментов может быть получен как инвариант преобразования трансляции, вращению и масштабирования. Эти семь моментов следующие:

                                                                                                         (5)

                                                                                          (6)

                                                                        (7)

                                                                        (8)

                               (9)

            (10)

                               (11)

fi = log (fi) для i=1,2, …, 7                                                                                           (12)

Приложение инвариантные моменты

Инвариантные моменты для цифр были рассчитаны, с использованием формул, данных. Моменты имеют малые значения, поэтому были взяты их логарифмические значения семь моментов для каждой цифры описаны в Таблице 1. Эти моменты использовались как входные данные к нейронной сети Кохенена [1]. Моменты первоначальных и преобразованных образов для цифр 2 и 3 даются, например, в таблицах (2, 3). Они показывают, что моменты являются инвариантными при преобразованиях. На рисунке 1 показано распознавание цифр от 2 до 9 при различных преобразованиях.

Рис. 1: Первоначальные и преобразованные цифры от 2 до 9

 

Таблица 1

Моменты первоначальных цифр


Цифры

f1

f2

f3

f4

f5

f6

f7

0

0.289674

1.891244

3.081613

3.707944

7.532423

5.018612

7.135025

1

0.144440

0.316391

2.456137

2.649631

5.204564

2.824600

6.216168

2

0.178210

0.795665

2.528437

2.651690

5.293618

4.912113

5.578113

3

0.135953

0.652886

1.322085

1.968569

3.722268

2.298309

3.816754

4

0.386179

1.634139

1.370766

2.014032

3.710191

2.975653

4.589142

5

0.267451

1.044964

3.369814

2.925594

6.124222

3.448483

6.413185

6

0.260682

1.393926

1.673842

2.024529

4.094603

5.121104

3.971167

7

0.156055

0.691871

0.664061

1.250537

2.356787

1.666528

2.359927

8

0.321487

1.489974

4.330697

4.314062

9.323424

5.154918

8.64582

9

0.2938891

1.2640356

1.7301497

1.9389643

3.941932

2.956681

3.90750

 

Таблица 2

Моменты образов и вариантов цифры 2

Образ 2

f1

f2

f3

f4

f5

f6

f7

Первоначальный

0.17821

0.795665

2.528437

2.651690

5.293618

4.912113

5.57811

Смещение 0,2

0.17975

0.798129

2.539199

2.633436

5.258346

4.189751

5.61392

Масштабирование 0,8

0.20006

0.859173

2.337220

2.912201

7.030966

3.445200

5.53713

Угол вращения p/6

0.17396

0.746629

2.275593

2.522349

4.991883

4.351878

5.19973

 

Таблица 3

Моменты образов и вариантов цифры 3

Образ цифры 3

f1

f2

f3

f4

f5

f6

f7

Первоначальный

0.135953

0.652886

1.322085

1.9685698

3.7222681

2.2983096

3.816754

Смещение 0.2

0.135953

0.652886

1.322085

1.9685698

3.7222681

2.2983096

3.816754

Масштабирование 0.8

0.159801

0.690702

1.494270

2.1207083

3.9784019

2.4663624

4.270824

Угол вращения p/6

0.103264

0.529989

1.312760

1.9181933

3.6848698

2.4416071

3.683503

 

Преобразования Фурье-Меллина, были введены для регистрации образов, которые имеют нарушения границ вследствие трансляции, вращения и масштабирования. При трансляции образов этот метод использует преобразования Фурье. Затем логарифмически-полярное преобразование применяется для определения спектра величины, вращения и масштабирования с учетом фазы корреляции в логарифмически-полярном пространстве. Это преобразование является причиной вращения и масштабирования, которые есть суть трансляции [2].

Логарифмически-полярное преобразование

Сделаем обзор логарифмически-полярных координатных преобразований. Рассмотрим полярную систему координат (r,q), где r обозначает радиальное расстояние от центра (xc, yc) и q обозначает полярный угол. Любая точка изображения с координатами (x, y) может быть представлена в полярных координатах (r,q))

                                                                                  (13)

                                                                                             (14)

Применяя полярное координатное преобразование к изображению I, отобразим радиальные строки в декартовой системе координат к горизонтальным строкам в полярном координатном пространстве. Преобразованное изображение обозначим Ip. Преимущество этого нового координатного пространства в том, что простое масштабирование и вращение в этой системе координат могут быть получен изменением значений (r,q). С помощью коэффициента масштабирования a в декартовом пространстве изображение I(x,y) отображается на I(ax, ay). Чтобы определить коэффициент масштабирования в логарифмическом пространстве применим преобразование:

(x,y) ® (log x, log y), (ax, ay) ® (log ax, log ay),

(log ax, log ay) ® (log x + log a, log y + log a).

Становится очевидно, что в логарифмическом пространстве введение коэффициента масштабирования проявляется как изменение стадии в логарифмическом преобразовании изображения. Поэтому, вместо того, чтобы отображать изображение в координатное пространство (r,q), лучше отобразить его в координатное пространство (log r,q), используя логарифмически-полярное преобразование. Переводя начало координат оттранслированного изображения к центру в логарифмически-полярном пространстве, получают инвариантный коэффициент масштабирования в этом пространстве. Поэтому логарифмически-полярное преобразование — это инвариантное вращение и коэффициенты масштабирования первоначального изображения [3].

Дискретное преобразование Фурье

Дискретное преобразование Фурье для оттранслированного изображения эквивалентно дискретному преобразованию Фурье на первоначальном изображении. Поэтому можно применить дискретное преобразование Фурье на логарифмически-полярном изображении, преобразованном уравнением (15) и получить спектр его величин с помощью уравнения (16), где R (X) — вещественная часть, и I(X) — мнимая часть спектра Fourier.

                     (15)

для 0 £ k1£ N1–1, 0 £ k1 £ N2 -1                          

                                                                          (16)

Теперь, мы можем получить инвариантные особенности изображения при преобразованиях Фурье-Меллина. Для этого, мы вычислим моменты спектра величин (дискретное преобразование Фурье), которые и будут особенностями инвариантов введения нейронной сети, можно также вычислить собственные значения и собственные векторы спектра Фурье (дискретное преобразование Фурье).

Преобразование Фурье-Меллина используется для идентификации образов которые подвергались некоторым преобразованием, таким как смещение, вращения, растяжение и сжатие.

Преобразование Фурье применяется для восстановления образов при сдвигах. Затем применяется логополярное преобразования для извлечения инвариантных признаков.

Алгоритм для извлечения инвариантных признаков

Шаг 1. Оцифровывание исходного образа.

Шаг 2. Трансформация образа такое как смещение, вращение, растяжение, сжатие.

Шаг 3. Применение преобразования Фурье-Меллина к каждому образу заключается в следующем

а) преобразование декартовых координат в полярные координаты используя лог-полярное преобразование для матрицы с размерностью (128´128) или (64´64) или (32´32).

б) применение быстрого преобразования Фурье для образов полярных координатах.

с) Вычисление абсолютного значения FFT которое выражает множество инвариантных признаков исходного образа.

д) Применение РСА метода для сокращения размерности вектора .

Шаг 4. Использование множества базисных признаков найденных на шаге 3(д) в качестве входных данных для гибридной нейросети. В качестве инвариантного признаков берутся собственные значения в порядке возрастания.

Шаг 5. Применение гибридной сети к найденному на шаге и входному вектору  размерности 64 для сокращения размерности входного вектора и окончательное распознавания уже с помощью карты Кохенена.

Заключение

Для решения исходной задачи производилось сравнение двух методов: метода геометрических моментов и метода преобразования Фурье-Меллина.

В результате сравнения определено что метод преобразования Фурье-Меллина предпочтительно для извлечения инвариантных признаков чем метод геометрических моментов, что дает и лучше качество распознавания. В свою очередь для метода преобразования Фурье-Меллина для сокращения размерности входного вектора удалось применить метод покомпонентного анализа (PCA) и было определено что 8 наибольших собственных значений дают лучшие результаты распознавания чем вектор  размерности 64.

 

Литература:

 

1. Фролов А. А., Муравьев И. П. Нейронные модели ассоциативной памяти.- М.: Наука, 1987.- 160 ст.

2. Фу К. Структурные методы в распознавании образов.- М.: Мир, 1977.- 320 ст.

3. Фукунга К. Введение в статистическую теорию распознавания образов.- М.: Наука, 1982.- 367 ст.

Основные термины (генерируются автоматически): дискретное преобразование, момент, преобразование, логарифмически-полярное преобразование, входной вектор, координатное пространство, метод преобразования, шаг, исходный образ, логарифмически-полярное пространство.


Ключевые слова

алгоритм, распознавание образов, инвариантный образ, вариантный образ, преобразование, шаг., шаг

Похожие статьи

Использование методик параллельного программирования при численном решении задач оптимизации методами координатного и градиентного спусков на примере задач гашения колебаний

Рассматривается задача разработки и использования методов параллельного программирования при численном решении задач оптимизации методами координатного и градиентного спусков. Задача оптимизации рассматривается в контексте решения задачи гашения коле...

Исследование устойчивости конечно разностных схем для численного решения уравнений колебаний прямоугольной мембраны и прямоугольной пластины

Рассматривается задача исследования устойчивости разностных схем для численного решения уравнений колебаний прямоугольной мембраны и прямоугольной пластины. Исследование проводится методом Неймана. Выводятся соотношения зависимости шага по времени от...

Алгоритмы расщепления для задачи о пропозициональной выполнимости

В статье исследуется задача о пропозициональной выполнимости и известные алгоритмы ее решения. Приведено обоснование её значимости как широко применимой задачи, для которой впервые было сформулировано и доказано свойство NP-полноты. Автором разработа...

Методы решения нелинейных уравнений

Статья посвящена изучению методов решения нелинейных уравнений, в том числе, с использованием системы автоматизированного проектирования MathCAD. Рассмотрены шаговый метод, методы половинного деления и Ньютона, приведены подробные алгоритмы применени...

Алгоритмы распознавания символов

Статья посвящена рассмотрению существующих на сегодняшний день вариантов решения проблемы распознавания символов печатного текста. В процессе исследования отдельное внимание уделено системе оптического распознавания символов, а именно специализирован...

Робастная устойчивость системы с одним входом и одним выходом в классе катастроф «гиперболическая омбилика»

В статье предлагается новый подход к построению систем управления для объектов с неопределенными параметрами в форме трехпараметрических структурно-устойчивых отображений из теории катастроф, позволяющей синтезировать высокоэффективные системы управл...

Модифицированное уравнение Беллмана для эргодических марковских цепей с доходами

Управляемые марковские цепи с одним эргодическим классом и, возможно, с невозвратными состояниями изучаются с помощью операторов сжатия. Строится модифицированное уравнение Беллмана, позволяющее найти оптимальные стратегии не только на конечном, но и...

Приведение к тригонометрической проблеме моментов на примере задачи гашения колебаний прямоугольной мембраны, балки и прямоугольной пластины

Рассматривается задача приведения к тригонометрической проблеме моментов при исследовании задачи гашения колебаний на примере исследования таких структур как прямоугольная мембрана, балка и прямоугольная пластина.

Получение интегралов энергии для прямоугольной мембраны, балки и прямоугольной пластины

Рассматривается задача получения функционала, который полностью описывают все возможные состояния физического объекта для управления им. Этот функционал называется интегралом энергии. В статье приведены способы получения интеграла энергии на примере ...

Модульный анализ сеточных методов решения дифференциальных уравнений

Разработка пакета прикладных программ, что особенно актуально в рамках математической физики, является очень важной. Это означает, в первую очередь, необходимость, модельного анализа рассматриваемого класса задач. При этом выделяются отдельные подзад...

Похожие статьи

Использование методик параллельного программирования при численном решении задач оптимизации методами координатного и градиентного спусков на примере задач гашения колебаний

Рассматривается задача разработки и использования методов параллельного программирования при численном решении задач оптимизации методами координатного и градиентного спусков. Задача оптимизации рассматривается в контексте решения задачи гашения коле...

Исследование устойчивости конечно разностных схем для численного решения уравнений колебаний прямоугольной мембраны и прямоугольной пластины

Рассматривается задача исследования устойчивости разностных схем для численного решения уравнений колебаний прямоугольной мембраны и прямоугольной пластины. Исследование проводится методом Неймана. Выводятся соотношения зависимости шага по времени от...

Алгоритмы расщепления для задачи о пропозициональной выполнимости

В статье исследуется задача о пропозициональной выполнимости и известные алгоритмы ее решения. Приведено обоснование её значимости как широко применимой задачи, для которой впервые было сформулировано и доказано свойство NP-полноты. Автором разработа...

Методы решения нелинейных уравнений

Статья посвящена изучению методов решения нелинейных уравнений, в том числе, с использованием системы автоматизированного проектирования MathCAD. Рассмотрены шаговый метод, методы половинного деления и Ньютона, приведены подробные алгоритмы применени...

Алгоритмы распознавания символов

Статья посвящена рассмотрению существующих на сегодняшний день вариантов решения проблемы распознавания символов печатного текста. В процессе исследования отдельное внимание уделено системе оптического распознавания символов, а именно специализирован...

Робастная устойчивость системы с одним входом и одним выходом в классе катастроф «гиперболическая омбилика»

В статье предлагается новый подход к построению систем управления для объектов с неопределенными параметрами в форме трехпараметрических структурно-устойчивых отображений из теории катастроф, позволяющей синтезировать высокоэффективные системы управл...

Модифицированное уравнение Беллмана для эргодических марковских цепей с доходами

Управляемые марковские цепи с одним эргодическим классом и, возможно, с невозвратными состояниями изучаются с помощью операторов сжатия. Строится модифицированное уравнение Беллмана, позволяющее найти оптимальные стратегии не только на конечном, но и...

Приведение к тригонометрической проблеме моментов на примере задачи гашения колебаний прямоугольной мембраны, балки и прямоугольной пластины

Рассматривается задача приведения к тригонометрической проблеме моментов при исследовании задачи гашения колебаний на примере исследования таких структур как прямоугольная мембрана, балка и прямоугольная пластина.

Получение интегралов энергии для прямоугольной мембраны, балки и прямоугольной пластины

Рассматривается задача получения функционала, который полностью описывают все возможные состояния физического объекта для управления им. Этот функционал называется интегралом энергии. В статье приведены способы получения интеграла энергии на примере ...

Модульный анализ сеточных методов решения дифференциальных уравнений

Разработка пакета прикладных программ, что особенно актуально в рамках математической физики, является очень важной. Это означает, в первую очередь, необходимость, модельного анализа рассматриваемого класса задач. При этом выделяются отдельные подзад...

Задать вопрос