В 2015 году в торцевой стене 3-х этажного здания СОШ №78 в г. Оренбурге были замечены значительные деформации стеновых панелей. С целью определения причин деформации и степени их опасности экспертной группой АНО «Технопарк ОГУ» было проведено обследование технического состояния торцевой стены шириной 6 м в осях Г — Д по оси 1 (рис.1).
Рис. 1. Школа №78 в г. Оренбурге
Выявленные при визуальном обследовании деформации стены с внутренней стороны проявились в виде разрывов обоев и раскрытии зазора между стеновыми панелями и колоннами каркаса (рис.2).
Рис. 2. 3 этаж. Стена в осях Г — Д. Общий вид изнутри. Горизонтальная трещина в сопряжении стеновых панелей
С наружной стороны стены трещины прошли по вертикальным швам между угловыми и поясными панелями (рис.3) на всю высоту здания.
Рис. 3. Общий вид аварийной стены в осях 1-Г. Фрагменты по высоте стены. Трещина в вертикальном шве.
В середине 80-х годов прошлого века в Оренбурге началось строительство 3-х этажной, с техподпольем, среднеобразовательной школы в конструкциях межвидовой серии 1.020–1/83.
В процессе монтажа каркаса здания школы строительство было приостановлено, консервация недостроенного здания не была выполнена. В начале 90-х годов строительство школы, без обследования технического состояния, было продолжено и в 1992 году завершено.
В общем объеме, возведенных в 70-х — 90-х годах прошлого века общественных зданий в Оренбуржье, значительное количество построено в сборных железобетонных конструкциях серии ИИ-04, 1.020/1, 1.020–1/83.
Серия 1.020–1/83 «Конструкции каркаса межвидового применения для многоэтажных общественных, производственных зданий» одна из самых объемных типовых серий для каркасного домостроения, получившая свое развитие на базе серии ИИ-04 (рамно-связевый, связевый каркас). Каркас здания в конструкциях 1.020–1/83 связевый, пространственная жесткость обеспечивается системой диафрагм жесткости (пилонов), объединенных жесткими в своей плоскости, дисками перекрытий. Соединения ригелей каркаса с колоннами шарнирное. Наружное стеновое ограждение здания из легкобетонных или ячеистобетонных навесных или самонесущих стеновых панелей по серии 1.030.1–4 (до 90-х годов по серии 1.432–14/80).
Монтаж конструкций осуществляется при помощи приспособлений, позволяющих свободную установку элементов в проектное положение или ограниченно свободную.
За более чем 30 летний период применения, конструкции серии 1.20–1/83 зарекомендовали себя как надежные несущие системы.
В материалах экспертных организаций, проводивших анализ аварии зданий и сооружений за период 1981–2003 года в Российской Федерации, не упоминаются случаи аварии каркасных систем межвидовой серии 1.020–1/83.
По поводу эксплуатационной надежности было очень мало нареканий, в основном в связи с нарушением правил технической эксплуатации. В каркасных зданиях большое количество узловых соединений выполняемых на сварке, эти стыки, как и стыки в бескаркасных (крупнопанельных) зданиях имеют серьезные недостатки и нередко становятся причиной повреждения конструкции. Анализ аварии зданий и сооружений за 1981–1985 годы показал, что непроектное выполнение узлов соединений дает до 40 % аварии в сборных зданиях [1]. При проведении обследования торцевой стены было установлено, что панели стен однослойные, керамзитобетонные плотного строения толщиной 350 мм по прочности на сжатие класса В3,5.
При визуальном осмотре стеновых панелей с наружной стороны внешних признаков снижения эксплуатационных качеств в виде трещин, сколов, смятия, расслаивания не выявлено.
При обследовании торцевой стены с внутренней стороны были выявлены повреждения узловых соединений с нарушением анкеровки закладных деталей (рис.4), разрывы сварных швов, соединяющий планки с колоннами.
Характер повреждений узловых соединений стеновых панелей с колоннами по оси Г и по оси Д отличается. В узловых соединениях стеновых панелей с колоннами по оси Г произошло в основном смещение панели из плоскости стены с разрывом сварных соединений или нарушением анкеровки закладных деталей (рис.4). Зазор между стеновыми панелями и колоннами достигает 90 мм при проектном зазоре 20 мм, смещение по вертикали практически отсутствует.
Рис. 4. Закладная деталь сместилась из проектного положения.
В узловых соединениях панелей с колонной по оси Д произошло смещение по вертикали с разрывом в ряде случаев сварных соединений. Смещение по вертикали достигает 50 мм на 1 этаже и до 8 мм на 3 этаже. Качество сварных швов невысокое, при проектной высоте катета сварного шва 6 мм и длине 100 мм, фактически высота катета местами до 3–4 мм, длина шва местами до 40–60 мм.
Самонесущие панели, являющиеся конструктивно независимой частью здания, в большинстве проектов не учитываются при расчете здания на прочность и устойчивость.
Монтаж их осуществляется после возведения и закрепления несущих конструкций на захватке.
Во время монтажа стеновых панелей, монтажная деталь, установленная на верхней грани, соединяется стальной планкой с закладной деталью колонны при помощи сварки (рис.2).
Горизонтальное смещение нижней грани панели невозможно без смещения стеновой панели на которой она установлена.
Осмотр цокольной панели в техподполье выявил наличие клиновидного зазора между колонной и панелью с шириной раскрытия внизу до 8–10 мм и 80 мм вверху.
Характер выявленных повреждений свидетельствует о том, что причиной деформации торцевой стены является некачественный монтаж конструкций. Анализ аварий зданий и сооружений показывает, что большое количество аварий происходит при эксплуатации, когда заложенные при строительстве дефекты постоянно развиваясь под воздействием различных неблагоприятных факторов, приводят к авариям.
Судя по состоянию утеплителя и растворного заполнения, заложенных в зазор между стеновыми панелями и колоннами, толщина и положение которых практически не изменились за время эксплуатации, дефекты были еще до сдачи в эксплуатацию объекта и рабочие не оценили серьезность повреждений и просто заделали раскрывшиеся зазоры.
Деформации по вертикали стеновых панелей по оси Д, вероятнее всего, произошли из-за просадки смонтированных трех нижних панелей на утолщенных растворных швах или из-за просадки фундамента и вызвали также депланацию плоскости стены.
Смещение панелей по горизонтали в узлах соединений по оси Г, может быть вызвано несколькими причинами, в т.ч.: депланацией из-за просадки стены по оси Д; льдообразованием в зазорах между панелями и колонной в период остановки строительства; переломом осевой линии стены и возникновением горизонтальной составляющей усилий из-за дефектов монтажа; изначальным смещением с проектного положения цокольной панели; из-за монтажа стеновых панелей, произведенного до окончания монтажа диска перекрытия данного яруса.
С позиции теории надежности ограждающей конструкции — многофункциональные и многоэлементные системы.
Можно рассматривать начальную надежность строительных конструкций, в частности стенового ограждения, по геометрическим отказам, которые возникают в результате накопления изготовительных, разбивочных и сборочных погрешностей.
Исследование влияния точности монтажа показали, что погрешности монтажа приводили к снижению прочности стыка до 15 ?.
При монтаже стеновых панелей допущены отклонения от величин, допускаемых нормами [2] в три и более раза в части отклонений от совмещения ориентиров, отклонений от вертикали верха плоскостей панелей, нарушении соосности смежных панелей.
В связи с разрушением узловых соединений стеновых панелей длина ненадежно раскрепленного участка стены по оси Г в пределах 3 этажей составляет 8,8 м при толщине стены 0,35 ?.
Экспертная оценка надежности стенового ограждения с учетом условий надежности качества проекта, качества монтажа и качества эксплуатации, а также удельного веса условий надежности, удельной надежности показала условную надежность торцевой стены β =, которая соответствует вероятности аварии в год Q=10–3, что говорит о недопустимой надежности стенового ограждения.
Техническое состояние оценивается как аварийное. Восстановление эксплуатационной надежности стены возможно осуществить двумя способами:
а) полный демонтаж стены с последующим восстановлением;
б) усиление узлов соединения стеновых панелей с колоннами.
Литература:
1. Ройтман А.Г. Надежность конструкции эксплуатируемых зданий / А.Г. Ройтман. — М.: Стройиздат, 1985. — 175 с.; ил.-
2. Касимов Р.Г. Отчет по результатам экспертизы технического состояния торцевой стены по оси 1 в осях Г-Д МОБУ «СОШ №78» в г. Оренбурге АНО «Технопарк ОГУ», 2015 с.;
3. СП 70.13330.2011 «СНиП 3.03.01–87. Несущие и ограждающие конструкции»;
4. Добромыслов, А.Н. Оценка надежности зданий и сооружений по внешним признакам. Справочное пособие / А.Н. Добромыслов. — М.: Издательство АСВ, 2004, — 72 с.