В работе приводятся результаты влияния применения метанола в дизеле 2Ч 10,5/12,0 при работе с двойной системой топливоподачи (ДСТ) в зависимости от различных установочных УОВТ при n = 1800 мин-1 на максимальное давление сгорания в цилиндре.
Ключевые слова: дизель, метанол, двойная система топливоподачи, максимальное давление.
Если при оптимальных значениях установочных УОВТ (Θдт = 34º и Θм = 34º) максимальное значение давления газов в цилиндре дизеля равно pzmax = 7,09 МПа, то при большем значении Θм = 38º давление газов в цилиндре возрастает до pzmax = 7,31 МПа. При других значениях Θм = 30º, 26º и 22º значения давления газов в цилиндре pzmax снижаются, соответственно, до 6,43, 5,82 и 5,04 МПа. Кривые изменения максимального значения давления газов в цилиндре дизеля, полученные при установочном УОВТ Θдт = 26º и различных углах впрыскивания метанола Θм, показывают, что при установочных УОВТ Θм, равных 34º, 30º, 26º и 22º, максимальное давление газов pzmax равно, соответственно, 5,81, 5,68, 5,28 и 4,98 МПа. Процесс сгорания при этом развивается очень «вяло», резко падает мощность дизеля, ухудшается экономичность. Кривые изменения максимального значения давления газов в цилиндре дизеля, полученные при установочном УОВТ Θдт = 30º и разных углах впрыскивания метанола Θм, показывают, что при установочных УОВТ Θм, равных 34º, 30º, 26º и 22º, максимальное давление газов в цилиндре pzmax снижается, соответственно, до значений 6,55, 6,13, 5,63 и 5,09 МПа [1–7].
На рисунке 1 из графика видно, что при увеличении угла впрыскивания Θдт максимальное давление цикла рz max увеличивается.
Кривые изменения максимального значения давления газов в цилиндре дизеля, полученные при установочном УОВТ Θдт = 38º и разных углах впрыскивания Θм, показывают, что при установочных УОВТ, равных 38º, 34º, 30º, 26º и 22º, рz max соответственно, равно 7,51, 6,89, 6,32, 6,03 и 5,02 МПа [8–13].
Из графика видно, что зависимость увеличения pzmax при увеличении Θдт сохраняется. Раннее впрыскивание метанола сопровождается предварительным испарением, накоплением в объеме камеры сгорания паровой фазы, снижением температуры сжатия, в результате чего воспламенение запального ДТ, да и всего заряда в целом, происходит с большей задержкой, а сгорание идёт с большей скоростью, значительно повышая «жесткость» процесса сгорания. При одновременном впрыскивании ДТ и метанола (Θдт = 38º, Θм = 38º) процесс сгорания близок к оптимальному [14–20].
На рисунке 1 также видно, что при этих значениях Θдт и Θм суммарный ge∑ имеет минимум. Этот минимум составляет 504 г/(кВт·ч), в то время как при углах впрыскивания Θдт = 34º, Θм = 34º ge∑ составляет 502 г/(кВт·ч). Причина заключается в том, что увеличение установочного УОВТ ДТ и метанола способствует росту рz max, которое и оказывает влияние на показатели экономичности. Но при увеличении цикловой подачи метанола на больших нагрузках появляются стуки, свидетельствующие о высокой скорости нарастания давления. По указанным выше причинам возникновения стуков и сильного шума на больших нагрузках режим работы дизеля при данных установочных УОВТ (Θдт = 38º, Θм = 38º) рекомендован быть не может.
Рис. 1. Влияние применения метанола в дизеле 2Ч 10,5/12,0 при работе с ДСТ в зависимости от различных установочных УОВТ при n = 1800 мин-1 на максимальное давление сгорания в цилиндре (pе = 0,585 МПа, qцдт = 6,6 мг/цикл)
Кривые изменения максимального значения давления газов в цилиндре дизеля, полученные при установочном УОВТ Θдт = 42º и разных углах впрыскивания метанола Θм, показывают, что при установочных УОВТ Θм, равных 38º, 34º, 30º, 36º и 22º, pzmax равно, соответственно, 7,59, 6,98, 6,48, 6,10 и 5,26 МПа. На графике снова видна тенденция увеличения pzmax при увеличении Θм. С увеличением Θвпр возрастает время нахождения топлива в КС до достижения критической температуры, при которой происходит воспламенение [21–28].
Литература:
1. Скрябин М. Л. Исследование эффективных показателей газодизеля с промежуточным охлаждением наддувочного воздуха // Молодой ученый. 2015. № 10 (90). С. 312–315.
2. Скрябин М. Л. Улучшение экологических показателей дизеля путем применения природного газа и промежуточного охлаждения наддувочного воздуха // Молодой ученый. 2015. № 10 (90). С. 315–318.
3. Скрябин М. Л. Влияние применения природного газа на содержание токсичных компонентов в отработавших газах дизеля 4ЧН 11,0/12,5 с ПОНВ при работе на номинальной частоте вращения в зависимости от установочного угла опережения впрыскивания топлива // Молодежная наука 2014: технологии, инновации. Материалы Всероссийской научно-практической конференции, молодых ученых, аспирантов и студентов. Пермь, 2014. С. 101–104.
4. Лопатин С. О., Скрябин М. Л. Влияние применения метаноло-топливной эмульсии на объемное содержание и массовую концентрацию оксидов азота в цилиндре дизеля 4Ч 11,0/12,5 в зависимости от изменения нагрузки // Молодежная наука 2014: технологии, инновации. Материалы Всероссийской научно-практической конференции, молодых ученых, аспирантов и студентов. Пермь, 2014. С. 96–98.
5. Лиханов В. А., Гребнев А. В., Бузмаков Ю. Г., Скрябин М. Л. Улучшение эффективных показателей дизеля с промежуточным охлаждением наддувочного воздуха при работе на природном газе // Тракторы и сельхозмашины. 2008. № 6. С. 19–21.
6. Лиханов В. А., Гребнев А. В., Бузмаков Ю. Г., Скрябин М. Л. Улучшение токсических показателей дизеля с промежуточным охлаждением наддувочного воздуха при работе на природном газе // Тракторы и сельхозмашины. 2008. № 7. С. 6–7.
7. Скрябин М. Л. Улучшение экологических показателей дизеля 4ЧН 11,0/12,5 с промежуточным охлаждением наддувочного воздуха при работе на природном газе путем снижения содержания оксидов азота в отработавших газах. Диссертация на соискание ученой степени кандидата технических наук / Киров, 2009. — 202 с.
8. Скрябин М. Л. Улучшение экологических показателей дизеля 4ЧН 11,0/12,5 с промежуточным охлаждением наддувочного воздуха при работе на природном газе путем снижения содержания оксидов азота в отработавших газах. Автореферат диссертации на соискание ученой степени кандидата технических наук / Санкт-Петербургский государственный аграрный университет. Санкт-Петербург, 2009. — 18 с.
9. Скрябин М. Л. Разработка программы стендовых исследований газодизеля с промежуточным охлаждением надувочного воздуха // Современная наука: актуальные проблемы и пути их решения. 2015. № 4 (17). С. 53–55.
10. Скрябин М. Л. Особенности горения капли дизельного топлива в турбулентном потоке метано-воздушной смеси в цилиндре газодизеля // Современная наука: актуальные проблемы и пути их решения. 2015. № 4 (17). С. 56–59.
11. Скрябин М. Л. Исследование мощностных и экономических показателей газодизеля с промежуточным охлаждением надувочного воздуха // Современная наука: актуальные проблемы и пути их решения. 2015. № 4 (17). С. 59–62.
12. Скрябин М. Л. Влияние угла опережения впрыскивания топлива на экологические показатели газодизеля с промежуточным охлаждением надувочного воздуха // Современная наука: актуальные проблемы и пути их решения. 2015. № 4 (17). С. 62–65.
13. Скрябин М. Л. Снижение дымности отработавших газов дизеля 2Ч 10,5/12 // Молодой ученый. 2015. № 11 (91). С. 430–433.
14. Скрябин М. Л. Расчет содержания оксидов азота в цилиндре дизеля 4ЧН 11,0/12,5 в зависимости от изменения угла поворота коленчатого вала // Молодой ученый. 2015. № 11(91). С. 433–436.
15. Скрябин М. Л. Влияние установочного угла опережения впрыскивания топлива на токсичность отработавших газов дизеля 4ЧН 11,0/12,5 // Молодой ученый. 2015. № 11(91). С. 436–439.
16. Лиханов В. А., Лопатин О. П. Улучшение экологических показателей тракторного дизеля путем применения природного газа и рециркуляции отработавших газов, метаноло- и этаноло-топливных эмульсий // Тракторы и сельхозмашины. 2015. № 3. С. 3–6.
17. Лиханов В. А., Лопатин О. П. Улучшение экологических показателей дизеля 4Ч 11,0/12,5 путем применения природного газа и рециркуляции // Транспорт на альтернативном топливе. 2014. № 4 (40). С. 21–25.
18. Лиханов В. А., Лопатин О. П. Применение природного газа и рециркуляции на тракторном дизеле 4Ч 11,0/12,5 // Тракторы и сельхозмашины. 2014. № 6. С. 7–9.
19. Лиханов В. А., Лопатин О. П. Улучшение экологических показателей дизеля путем применения этаноло-топливной эмульсии // Тракторы и сельхозмашины. 2013. № 2. С. 6–7.
20. Лиханов В. А., Лопатин О. П. Снижение содержания оксидов азота в отработавших газах дизеля 4Ч 11,0/12,5 путем применения этаноло-топливной эмульсии // Транспорт на альтернативном топливе. 2012. № 4 (28). С. 70–73.
21. Лиханов В. А., Лопатин О. П. Улучшение экологических показателей дизеля с промежуточным охлаждением наддувочного воздуха // Тракторы и сельхозмашины. 2011. № 2. С. 6–7.
22. Лиханов В. А., Лопатин О. П. Снижение содержания оксидов азота в отработавших газах дизеля с турбонаддувом путем применения природного газа // Тракторы и сельхозмашины. 2010. № 1. С. 11–13.
23. Лиханов В. А., Лопатин О. П., Шишканов Е. А. Снижение содержания оксидов азота в отработавших газах дизеля путем их рециркуляции // Тракторы и сельхозмашины. 2007. № 9. С. 8–9.
24. Лиханов В. А., Лопатин О. П., Олейник М. А., Дубинецкий В. Н. Особенности химизма и феноменологии образования оксидов азота в цилиндре дизеля при работе на природном газе // Тракторы и сельхозмашины. 2006. № 11. С 13–16.
25. Лиханов В. А., Лопатин О. П. Улучшение эксплуатационных показателей дизеля 4Ч 11,0/12,5 путем применения этаноло-топливной эмульсии // Известия Международной академии аграрного образования. 2013. Т. 4. № 16. С. 170–173.
26. Лиханов В. А., Лопатин О. П., Анфилатов А. А. Снижение содержания оксидов азота в отработавших газах дизеля путем применения метанола с использованием двойной системы топливоподачи // Тракторы и сельхозмашины. 2012. № 5. С. 5–8.
27. Лиханов В. А., Лопатин О. П. Исследования эффективных и экологических показателей дизеля 4Ч 11,0/12,5 при работе на природном газе с рециркуляцией отработавших газов, метаноло- и этаноло-топливных эмульсиях // Международный журнал прикладных и фундаментальных исследований. 2015. № 5. С. 22–25.
28. Лиханов В. А., Лопатин О. П. Исследование эффективных показателей дизеля при работе на природном газе, метаноло- и этаноло-топливных эмульсиях // Международный научно-исследовательский журнал. 2015. № 4–1 (35). С. 79–81.