Прозрачные проводящие покрытия (ППП) представляют собой различные тонкопленочные материалы (полупроводниковые оксиды металлов, полимеры, углеродные структуры), которые обладают высокой электропроводностью и хорошей оптической прозрачностью. Наибольшее применение сегодня получили ППП на основе металлооксидов (MeO). Большинство из них − это бинарные соединения (In2O3, ZnO, SnO2 и CdO), содержащие один металлический элемент. В стехиометрическом составе данные соединения являются диэлектриками, однако, из-за большого количества внутренних дефектов, которые выражаются в наличии кислородных вакансий или в присутствии межузельных атомов металла, они могут становиться полупроводниками с широкой запрещенной зоной (Eg>3 эВ). Энергия образования вакансий и атомов в междоузлии при этом очень низка, поэтому данные дефекты легко формируются, что объясняет относительно низкое сопротивление нестехиометрических металлооксидов [1].
Высокая проводимость ППП на их основе (n=1019…1021 см-3) по-прежнему обеспечивается введением примесных атомов. Легирование позволяет увеличить концентрацию носителей заряда за счет неглубоких примесных уровней, которые образуются в зонной структуре MeO. При легировании руководствуются следующим правилом. Атом примеси должен иметь валентность выше, чем у атома металла, который образует оксидное соединение. В этом случае материал будет обладать проводимостью n-типа. В таблице 1 представлен перечень элементов, которые использовались в качестве примесей различных MeO для получения ППП на их основе [2].
Помимо высокой проводимости ППП имеют также хорошую оптическую прозрачность (коэффициент пропускания T>80 %) в видимой и ближней инфракрасной области электромагнитного спектра. Следовательно, окно пропускания ППП находится в диапазоне λ=(400...1500) нм. Это объясняется тем, что в области длинных волн (λ>1500 нм) свет отражается в результате появления плазменного края, когда частота света ω совпадает с частотой коллективных колебаний носителей заряда в материале (плазменная частота ωp). В то время как светопередача в ближнем ультрафиолете (λ<350 нм) ограничена запрещенной зоной, поскольку фотоны с энергией ħω>Eg поглощаются.
Таблица 1
Материалы ППП
Металлооксид |
Примесь |
In2O3 |
Sn, Ge, Mo, F, Ti, Zr, Mo, Hf, Nb, Ta, W, Te |
SnO2 |
Sb, F, As, Nb, Ta |
ZnO |
Al, Ga, B, In, Y, Sc, F, V, S, Ge, Ti, Zr, Hf |
CdO |
In, Sn |
Плазменная частота материала разделяет оптический диапазон на две области. В диапазоне частот ω<ωp наблюдается область отражения, а при ω>ωpматериал имеет окно пропускания. Плазменная частота и концентрация носителей заряда связаны следующим соотношением:
(1)
где n − концентрация носителей заряда, e − заряд электрона, ε0 — электрическая постоянная, ε∞ − диэлектрическая проницаемость материала на высоких частотах и m* − эффективная масса электрона.
Как видно из формулы (1) изменение концентрации носителей заряда в ППП будет приводить к изменению плазменной частоты. При увеличении n частота будет смещаться в сторону видимого диапазона, и окно пропускания будет существенно уменьшаться, что является нежелательным эффектом в различных областях применения ППП [3].
Однако существует определенный подход для решения задачи о сохранении высокой электрической проводимости и широкого окна пропускания. Проводимость может быть увеличена с помощью роста подвижности носителей заряда при n=const. В этом случае плазменная частота тоже не изменяется: ωp=const [4]. Таким образом, оптические и электрические свойства ППП непосредственно связанны между собой.
За последнее десятилетие области применения ППП растут стремительными темпами. Сегодня они используются при производстве различных оптоэлектронных приборов и устройств (рисунок 1): органических светодиодов, жидкокристаллических дисплеев, сенсорных экранов, электрохромных панелей, элементов гибкой электроники и др. [5].
Например, оконные стекла, с нанесенными на их поверхность ППП с высокой отражающей способностью для инфракрасного излучения подобно металлическому зеркалу, позволяют пропускать свет, но при этом удерживать тепло снаружи или внутри здания, в зависимости от климата. Эта даёт возможность минимизировать затраты на кондиционирование воздуха в летний период и расходы на отопление в зимнее время. Проводимость таких теплозащитных покрытий при этом не имеет значения.
В более сложных оконных конструкциях, которые получили название «Умные окна», ППП необходимы для того, чтобы объединить в одну электрическую цепь электрохромные панели, которые меняют окраску и прозрачность при подаче на них напряжения.
ППП, нанесённые на автомобильные и авиационные стекла, способны нагревать их до 100 C° при пропускании тока, тем самым предотвращая их обледенение и запотевание. Преимуществом по сравнению с традиционными нагревателями горячим воздухом является то, что они могут иметь гораздо более короткое эффективное время размораживания и равномерные большие рабочие зоны.
Рис. 1. Области применения ППП
ППП могут использоваться в качестве защитного экрана для рабочих мест, особенно для чистых помещений, где проводится сборка электроники, в целях предотвращения вредного накопления электростатического заряда.
ППП также активно применяются в тонкопленочных солнечных элементах (СЭ), являющиеся в настоящее время наиболее перспективными в солнечной энергетике, поскольку они позволили существенно снизить затраты на производство. Для использования ППП в СЭ их прозрачность в видимой области спектра должна составлять более 80 %, чтобы способствовать прохождению максимального количества фотонов в активную область СЭ. Проводимость ППП должна быть большой для эффективного переноса заряда и минимизации потерь вырабатываемой энергии.
На сегодняшний день разработано несколько типов тонкопленочных СЭ (рисунок 2), находящихся как на стадии исследований и экспериментов, так и уже успешно применяемых [6]. Особое место среди них занимают сенсибилизированные красителем солнечные элементы (СКСЭ), разработанные Гретцелем и О'Реганом в 1991 году [7] и работающие по принципу фотосинтеза. Не смотря на то, что их эффективность СКСЭ меньше, чем у других тонкопленочных солнечных элементов (на сегодняшний день максимальная величина η составляет 15 % [8]), они способны улавливать не только яркий свет, но и рассеянное излучение, обладают высоким соотношением цена/производительность, низкой токсичностью производства и компонентов элементов и т. д. Благодаря этим преимуществам СКСЭ по праву считаются потенциальным кандидатом на звание дешевых и экологически чистых источников электроэнергии с широкой областью применения. На рисунке 3 изображена типичная структура СКСЭ и фотография коммерческой солнечной батареи.
а) на основе CdTe и CdS б) на основе аморфного Si
в) на основе селенида меди-индия (CIGS)
Рис. 2. Тонкопленочные солнечные элементы
На сегодняшний день наиболее часто используемым материалом ППП является оксид индия, легированный оловом (ITO). Тонкие пленки ITO обычно имеют коэффициент пропускания T>85 % и поверхностное сопротивление Rs=(10−15) Ом/□. Главным недостатком данного материала является его дороговизна из-за дефицита индия на планете, поэтому во многих областях применения ППП следует использовать другие металлооксидные соединения. Например, такие как: ATO − диоксид олова, легированный сурьмой; FTO − диоксид олова, легированный фтором; AZO − оксид цинка, легированный алюминием; GZO − оксид цинка, легированный галлием. ATO и FTO, кажется, большего всего подходят из представленных вариантов, поскольку SnO2 достаточно устойчив к атмосферным условиям, химически инертен и может противостоять высокой температуре, однако проводимость этих материалов еще не достигла того уровня, который имеет ITO [1].
а) солнечная батарея на основе СКСЭ б) структура СКСЭ
Рис. 3. Сенсибилизированные красителем солнечные элементы
Оптические и электрические свойства ППП зависят от технологии получения, выбор которой, как правило, связан с учетом оптимального функционирования покрытия для конкретного использования при сведении к минимуму затрат на производство. Нанесение металлооксидных покрытий можно выполнить физическими или химическими методами, а также их комбинациями.
Традиционные методы, к которым относят термическое вакуумное осаждение, магнетронное распыление, импульсно-лазерное осаждение, химическое парофазное осаждение, осложнены использованием вакуума, дорогостоящего технологического оборудования и не просты для промышленной реализации. В связи с этим актуальной задачей сегодня является разработка простой и дешевой технологии, которая бы обеспечивала получение ППП на основе оксидов металлов с управляемыми свойствами.
Спрей-пиролиз является наиболее подходящим под эти требования методом, поскольку обладает следующими преимуществами: простота; низкая стоимость; возможность варьирования свойств ППП путем изменения режимов их нанесения; большая поверхность зоны покрытия; потенциал для массового производства [9].
В настоящее время на кафедре «Нано- и микроэлектроника» Пензенского государственного университета ведутся работы, направленные на получение прозрачных проводящих ATO покрытий методом спрей-пиролиза и исследовании их электрических и оптических свойств. Экспериментальная установка, которая была разработана для реализации данного метода, подробно представлена в работе [10].
В качестве подложек используется натриево-кальциево-силикатное стекло (оконное стекло). Нанесение чистых пленок SnO2 осуществляется из раствора, содержащего тетрахлорид пентагидрат олова (SnCl4∙5H2O) и растворитель, в роли которого выступал этанол (C2H5OH). Распыление раствора на нагретые подложки производится с помощью сжатого воздуха, подаваемого при давлении равном 2 бар. Температура осаждения составляет 450 °C. Для того чтобы выполнить легирование пленок сурьмой в раствор добавляется прекурсор примеси − трихлорид сурьмы (SbCl3).
На рисунке 4 представлена фотография образцов, полученных в результате проведения нескольких экспериментов. Можно заметить, что покрытия являются прозрачными, однако дать количественную оценку прозрачности можно лишь с помощью спектрофотометрии. Поэтому в дальнейшем необходимо измерить коэффициенты пропускания.
а) чистое стекло б) образец с покрытием ATO в) образец с покрытием SnO2
Рис. 4. Фотография образцов
На рисунке 5 представлена фотография проведения грубой оценки значений Rs образцов с помощью мультиметра. Видно, что при введении Sb в SnO2, поверхностное сопротивление покрытия заметно понизилось. Легирование увеличивает концентрацию носителей заряда, так как атомы сурьмы выступают здесь в качестве доноров электронов. Для дальнейшего повышения проводимости требуется также провести ряд опытов, направленных на получение образцов с более высоким уровнем легирования и на измерение поверхностного сопротивления с использованием четырехзондового метода.
а) образец с покрытием SnO2 б) образец с покрытием ATO
Рис. 5. Грубая оценка значений поверхностного сопротивления образцов
Литература:
1. Batzill M., Diebold U. The surface and materials science of tin oxide // Progress in Surface Science. — 2005. — Vol. 79. — P. 47–154.
2. Stadler A. Transparent Conducting Oxides — An Up-To-Date Overview // Materials. — 2012. –N 5. — P. 661–683.
3. Ginley D. S. Handbook of transparent conductors // Springer. — 2010. — 547 p.
4. Solieman A., Aegerter M. A. Modeling of optical and electrical properties of In2O3: Sn coatings made by various techniques // Thin Solid Films. — 2006. — Vol. 502. — P. 205–211.
5. Liu H., Avrutin V., Izyumskaya N., Özgür Ü. Transparent conducting oxides for electrode applications in light emitting and absorbing devices // Superlattices Microstruct. — 2010. — Vol. 48. — N 5. — P. 458–484.
6. Klein A., Korber C., Wachau A., Sauberlich F., Gassenbauer Y., Harvey S. P., Proffit D. E. Transparent Conducting Oxides for Photovoltaic’s: Manipulation of Fermi Level, Work Function and Energy Band Alignment // Materials. — 2010. — N 3. — P. 4892–4914.
7. O'Regan B., Grätzel M.A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films // Nature. — 1991. — Vol. 353. — P. 737−740.
8. Burschka J., Pellet N., Moon S.J., Humphry-Baker R., Gao P., Nazeeruddin M.K., Grätzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells // Nature. –2013. — Vol. 499. — P. 316–319.
9. Печерская Р. М., Печерская Е. А., Соловьев В. А., Метальников А. М., Кондрашин В. И. Синтез и свойства нанокристаллических пленок диоксида олова, полученных методом пиролиза аэрозолей // Известия высших учебных заведений. Поволжский регион. Физико–математические науки. — Пенза: Изд–во ПГУ, 2012. — № 4. — С. 237–241.
10. Кондрашин В. И., Ракша С. В., Шикин М. Ю. Разработка лабораторного оборудования для получения и исследования материалов микро- и наноэлектроники // Молодой ученый. — 2014. — № 6. — С. 169–173.