Применение методов динамики к расчету строительных конструкций | Статья в сборнике международной научной конференции

Отправьте статью сегодня! Журнал выйдет 23 ноября, печатный экземпляр отправим 27 ноября.

Опубликовать статью в журнале

Авторы: ,

Рубрика: 9. Педагогика высшей профессиональной школы

Опубликовано в

VI международная научная конференция «Педагогическое мастерство» (Москва, июнь 2015)

Дата публикации: 25.05.2015

Статья просмотрена: 529 раз

Библиографическое описание:

Каверина, Э. В. Применение методов динамики к расчету строительных конструкций / Э. В. Каверина, Е. А. Татаркина. — Текст : непосредственный // Педагогическое мастерство : материалы VI Междунар. науч. конф. (г. Москва, июнь 2015 г.). — Москва : Буки-Веди, 2015. — С. 175-178. — URL: https://moluch.ru/conf/ped/archive/151/8209/ (дата обращения: 15.11.2024).

Основу инженерного образования обучающихся по направлению «Строительство» составляют такие дисциплины как «Теоретическая механика» и «Сопротивление материалов». Они являются первостепенной основой технического образования и позволяют овладеть «Строительной механикой», «Механикой грунта» и рядом других технических дисциплин, связанных с расчетом элементов конструкций, зданий и сооружений.

В начале обучения, когда студент еще мало имеет представления об области технических задач, которые ему предстоит решать, у будущего строителя возникает вопрос, зачем ему необходимо изучать такие разделы как «Кинематика» и «Динамика» в теоретической механике, или «Динамические задачи» сопротивления материалов, ведь здания и сооружения — условно неподвижные конструкции. С неохотой студенты относятся к изучению характеристик движения, изучению плоского и сферического движения, тем более законов динамики. Поэтому очень важно показать необходимость изучения данных разделов применительно к строительным конструкциям, продемонстрировать примеры применения законов динамики, возможности упрощения решения задач с их использованием, а подчас и единственный возможный способ решения.

Нельзя пренебрегать простейшим и наглядными примерами необходимости учета законов кинематики и динамики в строительных конструкциях, как например, возникновение дополнительных нагрузок на трос, удерживающий груз. Будет наглядным провести сравнение реакции, возникающей в тросе, в трех случаях, демонстрирующих сравнение задач статики и динамики (рис. 1, а) [2, с. 160].

Рис. 1.

 

1. Статическая задача. Груз массой m подвешен к неподвижному тросу, или груз поднимается и опускается с постоянной скоростью (рис. 1, б).

V=const или V=0.

Составляем уравнение равновесия: Fiy=T G=0;

T=G.

2. Динамическая задача 1. Момент начала подъема. Подъемный механизм создает ускорение, необходимое для достижения постоянной рабочей скорости. В соответствии с принципом Даламбера, для того, чтобы можно было составить уравнение равновесия, необходимо приложить силу инерции в сторону обратную ускорению (рис. 1, в).

0→V; а≠0; Ф=ma;

Составляем уравнение равновесия: Fiy=T G ─ Ф=0;

Т=G+Ф.

Т=G+aG/g

3. Динамическая задача 2. Сильный порыв ветра. Груз начинает раскачиваться по кривой. Возникает центростремительное ускорение (рис. 1, г).

an=V2/R

Составляем уравнение равновесия: Fiy=T─ Фn GCosα=0;

T= GCosα+ GV2/Rg

Подстановка численных значений и сравнение реальных перегрузок, возникающих в тросе, наглядно демонстрируют важность учета динамических процессов при расчетах, объясняют причины возможных поломок при запуске грузоподъемных механизмов. При объяснении решения важно подчеркнуть, что без принципа Даламбера решение подобных задач вообще невозможно [1,с.180–200], [2, с 157].

На подобном примере в задачах сопротивления материалов можно также продемонстрировать, каким образом увеличивается нормальное напряжение в тросе с учетом динамических нагрузок, и соответственно минимально необходимая площадь поперечного сечения (рис. 2).

http://test.i-exam.ru/pic/2017_225469/5963C084BDACD940F205C526E58405E1.jpg

Рис. 2

 

Сила натяжения троса в сечении на расстоянии z от нижнего конца обусловлена статической нагрузкой от веса груза Q и веса троса γАz, а также инерционной нагрузкой a∙(Q+γАz)/g. Следовательно, продольная сила определяется как:

N=Q+γАz+a∙(Q+γАz)/g,

а нормальное напряжение в сечении троса равно:

σ=(1+a/g)∙(Q+γАz)/A.

Наглядным объяснением важности изучения законов кинематики и динамики является демонстрация их применения для решения задач статики и упрощение этого решения по сравнению с использованием методов статики. Одним из таких примеров является принцип возможных перемещений, который позволяет продемонстрировать необходимость изучения плоского движения для вывода связей между перемещениями точек тела и возможность решения задач статики методами динамики. При этом демонстрационные примеры не обязательно должны быть громоздкими.

Например, на штангу АВ (рис. 3, а) шатунно-балансировочного механизма действует сила F и необходимо определить момент m пары сил, которую следует приложить к балансиру OE длиной l, чтобы уравновесить механизм в положении, когда угол ОАЕ=β, а угол ЕАВ=α. Весом звеньев и трением пренебрегаем. Решение задачи можно провести двумя способами.

Рис. 3

 

Применяя методы статики, рассмотреть равновесие стержня АЕ, АВ и ОЕ и составить соответствующие три уравнения равновесия:

Fiх = SA SЕ=0;

Fiх1 = SACosα F=0;

mO(Fi)= SЕSinβ m=0;

Решая данную систему, получим m=FlSinβ/Cosα.

Применяя принцип возможных перемещений (рис. 4), необходимо составить только одно уравнение:

FδSА mδφ=0. Откуда m= FδSА/δφ.

Рис. 4

 

Учитывая, что звено АЕ совершает плоское движение, находим связь между скоростями точек А и Е, и соответственно связь между перемещениями δSА и δφ.

ωОЕ= υЕ/l; → δφ= δSЕ/l;

По теореме о проекциях скоростей точек на прямую АЕ:

υАCosα=υЕSinβ; → δSАCosα=δSЕSinβ;

Тогда δSА/δφ=Sinβ/Cosαи m=FlSinβ/Cosα.

Принцип возможных перемещений также очень хорошо позволяет продемонстрировать сокращение решения задач статики при его использовании. Например, на рис. 5, а изображена конструкция, состоящая из четырех одинаковых Т-образных рам, соединенных шарнирами К, М, Q. Опоры А и Е — шарнирно-неподвижные, В и D — шарнирно-подвижные и необходимо определить горизонтальную составляющую http://www.teoretmeh.ru/dinamika8.files/image084.gif реакции опоры Е, вызванную силой http://www.teoretmeh.ru/dinamika8.files/image072.gif, приложенной к левой раме.

Рис. 5

 

Методы статики дадут довольно сложное и длинное решение, так как придется рассматривать равновесие четырех рам и решать систему из 12 уравнений с 12-ю неизвестными. Принцип возможных перемещений дает более простое и короткое решение [2, с.132], [3, с.213].

Изменив конструкцию опоры Е, сделаем ее подвижной. Чтобы система осталась в равновесии, приложим к опоре неизвестную искомую силу , (рис. 5, б). Задаем системе возможное перемещение, повернув левую раму вокруг опоры А на угол . С помощью мгновенных центров скоростей С1, С2 и С3 каждой рамы, определяем, что

=, а

или =(·=(2а·

Составляем уравнение работ, общее уравнение статики:

·=·=0;

или ··=0;

Откуда  = 1/2F.

Таких примеров можно привести много по каждому из изучаемых разделов кинематики и динамики, демонстрируя важность этих разделов для обучающихся по направлению «Строительство».

Также необходимо объяснить студентам, что огромное значение для практики представляют задачи об учете и анализе динамического поведения конструкций, вызванного наличием переменных во времени силовых нагрузок, которые могут быть подвижными, переменными по величине или направлению или носить случайный характер. Учет динамического фактора в поведении конструкции часто бывает решающим в анализе её надежности и функциональности, так известно множество фактов потери устойчивости, а то и разрушения равновесных конструкций типа мостовых или трубопроводных пролетов, из-за недостаточного динамического анализа на этапе их проектирования. Примеры подобных задач позволят продемонстрировать важность изучения таких разделов как: колебательное движение, теории удара и ряда других разделов динамики.

Для будущего строителя все разделы теоретической механики важны. Преподавателю необходимо это доказать, заинтересовав студента наглядными примерами и демонстрацией применения соответствующих методов и законов к расчету строительных конструкций.

 

Литература:

 

1.                  Строительная механика. В 2 т.: учебник для студ. учреждений высш. проф. образования / В. В. Бабанов — 2-е изд. стер. — М.: Издательский центр «Академия», 2012. — 303 с. — (сер. Бакалавриат)

2.                  Сопротивление материалов: лекции, семинары, расчетно-графические работы: учебник для бакалавров/ С. Н. Кривошапко. — М.: Издательство Юрайт, 2012. — 413 с. — Серия: Бакалавр.

3.                  Молотников В. Я. Механика конструкций. Теоретическая механика. Сопротивление материалов: Учебное пособие. — Спб.: Издательство «Лань», 2012.- 544 с.: ил. — (Учебники для вузов. Специальная литература)

Основные термины (генерируются автоматически): уравнение равновесия, будущий строитель, динамик, динамическая задача, левая рама, Метод статики, нормальное напряжение, опор А, плоское движение, теоретическая механика.