Устойчивость сферической оболочки в нестационарном магнитном поле | Статья в сборнике международной научной конференции

Отправьте статью сегодня! Журнал выйдет 1 февраля, печатный экземпляр отправим 5 февраля.

Опубликовать статью в журнале

Автор:

Рубрика: 1. Математика

Опубликовано в

XII международная научная конференция «Исследования молодых ученых» (Казань, июль 2020)

Дата публикации: 03.07.2020

Статья просмотрена: 25 раз

Библиографическое описание:

Меликян, К. В. Устойчивость сферической оболочки в нестационарном магнитном поле / К. В. Меликян. — Текст : непосредственный // Исследования молодых ученых : материалы XII Междунар. науч. конф. (г. Казань, июль 2020 г.). — Казань : Молодой ученый, 2020. — С. 3-6. — URL: https://moluch.ru/conf/stud/archive/378/15975/ (дата обращения: 19.01.2025).



В работе, на основе рассмотренной в [1] задачи динамической устойчивости сверхпроводящей замкнутой упругой сферической оболочки в однородном магнитном поле, получены области динамической устойчивости рассматриваемой оболочки и настроены графики зависимостей.

Ключевые слова: нестационарное магнитное поле, устойчивость

Введение: На основе выведенных основных уравнений и поверхностных условий, описывающие поведение сверхпроводящих замкнутых сферических оболочек в неоднородном магнитном поле, изучены возможности потери устойчивости оболочки под влиянием переменного магнитного поля и определены критические значения задачи.

Мат. модель задачи и методы решения: Рассмотрена задача динамической устойчивости сверхпроводящей замкнутой упругой сферической оболочки в однородном магнитном поле [1]

где единичные векторы по направлениям .

Добавочное магнитное поле

, обусловленное экранирующими токами, определяется из решения следующей граничной для уравнений Максвелла задачи

где единичный вектор внешней нормали к недеформированной поверхности тела.

Таким образом,

представляется в виде

Невозмущенное магнитное поле во внутренней области равно нулю, а во внешней области является результатом наложения полей (1.1) и (1.3). Следовательно

Подставляя (1.4) в систему

определяем поверхностную силу магнитного происхождения, действующую на оболочку в невозмущенном состоянии, используя (1.5), для отличных от нуля усилий невозмущенного состояния получаем следующие выражения:

Определение индуцированного во внешней области магнитного поля сводится к решению внешней задачи Неймана для сферы при следующем граничном условии

Решение указанной задачи Неймана определяется формулой Бьеркеса и имеет вид [1]

где

,

Используя (1.8) определяем и входящие в уравнения устойчивости

Здесь

Остается подставить (1.4), (1.6) и найденные изложенным способом значения и

в уравнения (1.9). В результате, исключая функции и , рассматриваемая задача динамической устойчивости сводится к исследованию следующего интегро-дифференциального уравнения относительно :

где

Решение уравнения (1.10), удовлетворяющее граничным условиям, представим в виде

где функции Лежандра.

Подставляя (1.11) в уравнение (1.10) и используя процесс ортогонализации, для определения получим бесконечную систему обыкновенных линейных дифференциальных уравнений с переменными коэффициентами. В первом приближении получается следующее уравнение:

Здесь

где

Рассмотрим случай . Тогда уравнение (1.12), в силу (1.13) и (1.14), принимает вид

(1.15)

где

В (1.16) частоты поперечных колебаний оболочки в присутсвии постоянного магнитного поля;

и коэффициенты возбуждения, обусловленные нестационарной частью магнитного поля.

Статическая неустойчивость: Если оболочка находится в постоянном магнитном поле , то, как видно из (1.16) и условием устойчивости является уравнение . Из этого уравнения, используя (1.16), условие устойчивости оболочки можно представить в виде

где

Критическое значение находим из условия минимума функции (1.17) по числам волн и . В результате получим

Динамическая неустойчивость: Уравнение (1.15) представляет собой известное уравнение Матье-Хилла [2]. Его решение может быть неустойчивым, устойчивым или периодическим в зависимости от значений параметров и . Границы областей главного параметрического резонанса, согласно [2], определяются по формулам:

для области, расположенной вблизи частоты

для области, расположенной вблизи частоты

Используя формулы (1.19)-(1.20) легко определить критические параметры напряженности внешнего магнитного поля, под действием которого или происходит потеря статической устойчивости оболочки, или в оболочке возбуждаются резонансные колебания параметрического типа.

Литература:

  1. Baghdasaryan G., Mikilyan M. Effects of Magnetoelastic Interactions in Conductive Plates and Shells. Springer, ISBN 978–3-319–19161–4, 2016, -289p.
  2. Mikilyan M., Marzocca P. Dynamic instability of of electroconductive cylindrical shell in a magnetic field. International Journal of Solids and Structures, 2018, 160, 168–179.
Основные термины (генерируются автоматически): динамическая устойчивость, магнитное поле, уравнение, вид, внешняя область, невозмущенное состояние, однородный магнитный пол, сверхпроводящая замкнутая упругая сферическая оболочка.

Ключевые слова

устойчивость, нестационарное магнитное поле

Похожие статьи

О решении задачи теории упругого режима при движении жидкости с учетом влияния начального градиента при второй фазе распределения давления в пласте

В данной работе рассматривается прямолинейно-параллельный неустановившийся фильтрационный поток упругой жидкости, при второй фазе распределения давления в пласте. Задача решается методом усреднений.

Генерация крупномасштабных вихревых структур во вращающейся самогравитирующей среде с мелкомасштабной неспиральной силой

В настоящей работе найдена новая крупномасштабная неустойчивость во вращающейся стратифицированной самогравитирующей среде с мелкомасштабной турбулентностью. Турбулентность возбуждается внешней мелкомасштабной силой с нулевой спиральностью и малым чи...

Псевдопараболическая регуляризация одной граничной обратной задачи для уравнения теплопроводности

Работа посвящена исследованию одной граничной обратной задаче для уравнения теплопроводности, которое связана с изучением нестационарных тепловых процессов. Обратная задача заключается в нахождении граничной функции из первой начально-краевой задачи ...

К вопросу решения задачи теории упругого режима при одномерном поступательном движении жидкости с учетом влияния начального градиента

В статье рассматривается прямолинейно-параллельный неустановившийся фильтрационный поток упругой жидкости, при заданном забойном давлении во времени. Задача решается методом усреднений [1, 2].

О работе конструкции с основанием под действием динамических нагрузок

В работе предложено решение вертикального и крутильного колебания вязкоупругого полупространства при применении идеи комплексных модулей упругости. Уравнение движения механической системы получено на основе принципа Даламбера.

Решение задачи теории упругого режима с учетом влияния начального градиента при второй фазе распределения давления в пласте

В статье рассматривается приближенный метод решения задачи теории упругого режима для одномерного поступательного движения жидкости с предельным градиентом давления для второй фазы. Задача решена методом «усреднений».

Задача о нормальных колебаниях системы вязких стратифицированных жидкостей в упругом сосуде

Изучаются свойства собственных значений и собственных функций в задаче о нормальных колебаниях вязкой несжимаемой стратифицированной жидкости, запол-няющей упругий сосуд. Получены утверждения о локализации спектра и доказана терема о полноте собствен...

Распространение волн в цилиндрическом слое с жидкостью

В работе рассматривается распространение волн в двухслойном цилиндрическом теле с идеальной жидкостью. Задача решается в потенциалах перемещений. Дисперсионное уравнение решается методом Мюллера.

Об устойчивости сжатых пластин

Решается задача об устойчивости сжатой эластомерной пластины в рамках теории тонких пластин и оболочек. Исследуется устойчивость плоской формы равновесия. Бифуркационные равновесные формы строятся с применением численных методов. Теоретические резуль...

Численные методы для решения задачи о нахождении выпуклой пространственной фигуры вращения максимальной площади поверхности при заданных ограничениях на ее ширину

Целью научного исследования является формализация задач о построении оптимальных выпуклых тел в форме задач оптимального управления и нелинейного программирования, исследование свойств полученных задач, разработка, реализация и сравнение численных ме...

Похожие статьи

О решении задачи теории упругого режима при движении жидкости с учетом влияния начального градиента при второй фазе распределения давления в пласте

В данной работе рассматривается прямолинейно-параллельный неустановившийся фильтрационный поток упругой жидкости, при второй фазе распределения давления в пласте. Задача решается методом усреднений.

Генерация крупномасштабных вихревых структур во вращающейся самогравитирующей среде с мелкомасштабной неспиральной силой

В настоящей работе найдена новая крупномасштабная неустойчивость во вращающейся стратифицированной самогравитирующей среде с мелкомасштабной турбулентностью. Турбулентность возбуждается внешней мелкомасштабной силой с нулевой спиральностью и малым чи...

Псевдопараболическая регуляризация одной граничной обратной задачи для уравнения теплопроводности

Работа посвящена исследованию одной граничной обратной задаче для уравнения теплопроводности, которое связана с изучением нестационарных тепловых процессов. Обратная задача заключается в нахождении граничной функции из первой начально-краевой задачи ...

К вопросу решения задачи теории упругого режима при одномерном поступательном движении жидкости с учетом влияния начального градиента

В статье рассматривается прямолинейно-параллельный неустановившийся фильтрационный поток упругой жидкости, при заданном забойном давлении во времени. Задача решается методом усреднений [1, 2].

О работе конструкции с основанием под действием динамических нагрузок

В работе предложено решение вертикального и крутильного колебания вязкоупругого полупространства при применении идеи комплексных модулей упругости. Уравнение движения механической системы получено на основе принципа Даламбера.

Решение задачи теории упругого режима с учетом влияния начального градиента при второй фазе распределения давления в пласте

В статье рассматривается приближенный метод решения задачи теории упругого режима для одномерного поступательного движения жидкости с предельным градиентом давления для второй фазы. Задача решена методом «усреднений».

Задача о нормальных колебаниях системы вязких стратифицированных жидкостей в упругом сосуде

Изучаются свойства собственных значений и собственных функций в задаче о нормальных колебаниях вязкой несжимаемой стратифицированной жидкости, запол-няющей упругий сосуд. Получены утверждения о локализации спектра и доказана терема о полноте собствен...

Распространение волн в цилиндрическом слое с жидкостью

В работе рассматривается распространение волн в двухслойном цилиндрическом теле с идеальной жидкостью. Задача решается в потенциалах перемещений. Дисперсионное уравнение решается методом Мюллера.

Об устойчивости сжатых пластин

Решается задача об устойчивости сжатой эластомерной пластины в рамках теории тонких пластин и оболочек. Исследуется устойчивость плоской формы равновесия. Бифуркационные равновесные формы строятся с применением численных методов. Теоретические резуль...

Численные методы для решения задачи о нахождении выпуклой пространственной фигуры вращения максимальной площади поверхности при заданных ограничениях на ее ширину

Целью научного исследования является формализация задач о построении оптимальных выпуклых тел в форме задач оптимального управления и нелинейного программирования, исследование свойств полученных задач, разработка, реализация и сравнение численных ме...