Радиотепловое излучение земных покровов
Автор: Гудков Сергей Михайлович
Рубрика: 2. Электроника, радиотехника и связь
Опубликовано в
Дата публикации: 07.10.2014
Статья просмотрена: 572 раза
Библиографическое описание:
Гудков, С. М. Радиотепловое излучение земных покровов / С. М. Гудков. — Текст : непосредственный // Современные тенденции технических наук : материалы III Междунар. науч. конф. (г. Казань, октябрь 2014 г.). — Казань : Бук, 2014. — С. 22-25. — URL: https://moluch.ru/conf/tech/archive/123/6325/ (дата обращения: 19.12.2024).
Собственное тепловое излучение сред определяется видом и строением молекул вещества, объемными неоднородностями плотности и неровностями поверхности, присутствием примесей веществ и термодинамической температурой. Интенсивность теплового излучения сред зависит от характеристик приемной аппаратуры: длина волны и полоса частот, вид поляризации и частотно-пространственные характеристики антенны, ориентация электрической оси антенны относительно нормали к излучающей поверхности.
Электрофизические характеристики типовых земных покровов.
«Комбинированные» модели атмосферы были получены для среднемесячных условий января и июля наφ= 45, 60 и 75° с.ш. и отражены в виде отдельных таблиц для широт; φ = 45 и 60° — до высоты 45 км, и для φ= 75° — до высоты 30 км.
Радиояркостные характеристики фоновых покровов определяются геометрическими и электрофизическими параметрами: комплексной диэлектрической проницаемостью поверхностного слоя покрова, которая для открытых почвогрунтов зависит от относительной объемной влажности почвыq, и определяется плотностью сухого грунта ρc, среднеквадратичным тангенсом угла наклона неровностей γ.
В простейшем случае излучения изотермичной и однородной средой коэффициент излучения χ полностью определяется ее комплексной диэлектрической проницаемостью ε=εʹ+iεʺ и описывается через коэффициенты отражения ФренеляR
где θ — угол приема излучения.
В таблице 1 исходные данные для оценки параметров типовых покровов приведены как значения диэлектрической проницаемости для природных и антропологических образований в миллиметровом диапазоне волн.
Таблица 1
Электрофизические и геометрические параметры покровов
Вид покрова |
λ, мм |
ε=εʹ+iεʺ |
γ |
Бетон |
8,6 |
5,5 — i0,5 |
0,037 |
3,3 |
5,55 — i0,36 |
||
Песчаный грунт: pc= 1,4 г/см3;q= 0,1 |
8,6 |
4 — il,l |
0,1 |
3,3 |
3,4 — i0,7 |
||
Глинистый грунт: pc = 1,8 г/см3, q = 0,1 |
8,6 |
4,8 — il,2 |
0,1 |
3,3 |
4,1 — i0,77 |
||
Пресная вода |
8,6 |
16,1 — i27,3 |
0 |
3,3 |
6,8 — i11,9 |
Поскольку приεʺ «1 коэффициент излучения определяется значением εʹ покрова, то по своим излучательным свойствам, все покровы можно условно разделить на три группы:
покровы с εʹ ≤ 3(соответственно χ ≤ 0,93при θ = 0°): грунты, песок, лед, асфальт;
бетон с εʹ = 5…5,5(соответственно χ = 0,84…0,855 при θ = 0°);
пресная вода, имеющая, в отличие от вышеперечисленных покровов, существенно выраженную спектральную зависимость εот λ и εʺ, соизмеримую с εʹ, при этом ее коэффициент излучения приθ = 0° имеет значения 0,46 при λ = 8,6 мм; при 0,6 — λ = 3,3 мм, т. е. заметно меньше, чем у бетона, льда и почвогрунтов.
Рассмотренные покровы представляют собой достаточно однородные среды, поскольку коэффициент затухания миллиметровых волн в этих средах весьма высок (выше 30 дБ/м), вследствие чего интенсивность излучения определяется параметрами приповерхностного слоя.
Эффективная температура земных покровов с учетом состояния атмосферы.
Эффективная температура (Тэфф) земных покровов без растительности в ММ-диапазоне волн складывается из двух составляющих, характеризующих интенсивности собственного излучения покрова и атмосферного излучения. Поэтому Тэфф почвогрунтов без растительности зависит от профиля рельефа поверхности, характера ее неровностей, диэлектрической проницаемости почвы, атмосферных условий, отличающихся большим разнообразием. При разработке модели излучательных свойств открытых почвогрунтов в миллиметровом диапазоне волн были приняты следующие допущения.
1. Рассматривались однородные, в среднем плоские горизонтальные участки поверхности без регулярного рельефа, покрытые хаотическими неровностями, как с горизонтальной, так и с наклонной средней плоскостью.
2. Считалось, что радиус корреляции высот неровностей существенно меньше размеров участка, формирующего излученное и отраженное поля.
3. Неровности поверхности являются крупномасштабными по сравнению с длиной волны и рассеяние на них можно описывать в приближении метода касательной плоскости с учетом затенений. Высоты неровностей статистически однородны и изотропны и распределены по нормальному закону.
4. Почва была достаточно однородной и диэлектрическая проницаемость поверхностного слоя не зависела от координат. Допускалось также, что почва была двухкомпонентной и состояла из сухого грунта и жидкой пресной воды.
Эффективная температура шероховатой поверхности Тэфф на горизонтальной (h) и вертикальной (v) поляризациях с учетом допущений 1–5 определяется формулой
(1.2)
где — коэффициент излучения поверхности с хаотическими неровностями ( — отношение потока излучения, рассеиваемого поверхностью, к потоку, падающему на неё) при горизонтальной и вертикальной поляризациях; Тz — термодинамическая температура земной поверхности в К; — яркостная температура атмосферного излучения, рассеянного поверхностью покрова в направлении зенитного угла θ*.
Яркостная температура отраженного излучения и могут быть найдены из соотношений:
(1.3)
(1.4)
где — яркостная температура нисходящего излучения неба; I — компоненты рассеяния, просуммированные по двум ортогональным поляризациям падающего излучения при фиксированной поляризации рассеянного излучения (верхние индексы соответствует поляризации рассеянного излучения, нижние — падающего).
Эффективная температура поверхности грунта на ортогональных поляризациях вычислялась для чистой атмосферы на 60° с.ш. в при λ = 2,2; 3,3; 8,6 мм. Расчеты проводились для песчаной почвы с плотностью сухого грунта 1,4 г/см3, относительной объемной влажностьюq = 0,1 при термодинамической температуре земной поверхностиTz = 287 К, соответствующей среднеиюльской температуре.
Рис. 1. Графики зависимости эффективной температуры песчаного грунта от широты при зенитном угле θ* = 45° для длин волн λ = 8,6;3,3 и 2,2 мм на горизонтальной и вертикальной поляризациях излучения
В таблице 1.2 приведены значения эффективных температур песчаного грунта на длинах волн λ = 8,6;3,3 и 2,2 мм для зенитных углов θ*=0° и θ*=45° на горизонтальной и вертикальной поляризациях; плотность сухого грунта 1,4 г/см3; относительная объемная влажность q= 0,1; термодинамическая температура земной поверхности Tz = 287. Диэлектрическая проницаемость бетона ε = 5,5+i0,5на λ = 8,6 мм и ε = 5,55+i0,36на λ = 2,2 и 3,3 мм, среднеквадратичный тангенс угла наклона неровностей .
Таблица 2
Электрофизические и геометрические параметры покровов
Вид покрова |
θ*, град |
0 |
45 |
|||||||
λ, мм |
8,6 |
3,3 |
2,2 |
8,6 |
3,3 |
2,2 |
||||
поляризация |
гориз. |
гориз. |
гориз. |
гориз. |
вертик. |
гориз. |
вертик. |
гориз. |
вертик. |
|
Песчаный грунт: q= 0,1 |
54.7 |
267,0 |
273,5 |
231,4 |
273,7 |
253,7 |
280,1 |
267,1 |
282,9 |
|
Бетон |
243,6 |
251,4 |
260,6 |
217,2 |
267,8 |
234,4 |
272,5 |
252,7 |
277,5 |
|
Водная поверхность |
143,3 |
201,3 |
235,1 |
120,0 |
179,1 |
186,5 |
235,0 |
230,0 |
261,4 |
|
Лес |
287 |
Из таблицы 2 следует, что эффективные температуры указанных покровов на вертикальной поляризации больше, чем на горизонтальной при зенитном угле, отличном от нуля. Из рассмотренных покровов максимальная эффективная температура у песчаного грунта (250...270 К при θ* = 0), у бетона меньше на 10... 15 К и существенно меньше (на несколько десятков К) — у гладкой поверхности воды. Эти закономерности подтверждены экспериментами.
Экспериментальные исследования, выполненные при длинах волн 2,2 и 8,6 мм, показали, что по своим излучательным свойствам растительные покровы близки к абсолютно черным телам и при решении многих прикладных задач могут быть использованы в качестве эталонных излучателей.
Результаты исследований фоновых характеристик покровов северного полушария. Эффективные температуры земных покровов существенно зависят как от электрофизических и геометрических свойств покрова, так и от термодинамической температуры поверхности Tz и углового спектра яркостной температуры неба Тb.
На рисунке 2 приведены зависимости эффективных температур песчаной почвы от местоположения точки наблюдения для зенитных углов θ* = 0. Видно, что с перемещением точки наблюдения на верхние широты эффективная температура грунта монотонно спадает на 15...30 К. Максимальные значения эффективных температур соответствуют длине волны 2,2 мм на вертикальной поляризации, минимальные — λ = 8,6 мм — на горизонтальной поляризации. Медленнее всего меняется с широтой эффективная температура грунта при λ = 8,6 мм на горизонтальной поляризации.
Рис. 2. Графики зависимости эффективной температуры песчаного грунта от широты при зенитном угле θ* = 0° для длин волн λ = 8,6; 3,3 и 2,2 мм (сплошная линия — горизонтальная поляризация, штриховая линия — вертикальная поляризация)
Таким образом, интенсивность радиотеплового излучения земных покровов определяется, в основном, диэлектрическими свойствами покровов, видом поляризации и углом приема излучения. Причем при зенитном угле 0° она близка их термодинамической температуре, а при вертикальной поляризации находится в диапазоне углов до 60°, Наименьшей эффективной температурой обладают водные поверхности.
Литература:
1. Голунов B. A., Зражевский А. Ю., Розанов Б. А. и др. Пассивная радиолокация на миллиметровых волнах. // Вопросы перспективной радиолокации. Коллективная монография. Под ред. А. В. Соколова. — М.: Радиотеника, 2003, с. 393–463.
2. Андреев Г. А.. Черная Л. Ф. Интенсивности миллиметровых волн, рассеянных хаотическими поверхностями. — Радиотехника и элекроника, 1981, т. 6, № 6, c. 1198–1206.
3. Кислов В. Я., Залогин И. И., Мясин Е. А. — Радиотехника и электроника, 1979 т. 24, № 6, с. 1118.
4. Исхаков И. А., Аганбекян К. А., Зражевский А. Ю. Поглощение и излучение безоблачной атмосферы Земли в миллиметровом диапазоне волн. // Препринт № 4(307). -М.: ИРЭ АН СССР, 1981.