Выбор системы управления двигателем электромобиля | Статья в сборнике международной научной конференции

Отправьте статью сегодня! Журнал выйдет 30 ноября, печатный экземпляр отправим 4 декабря.

Опубликовать статью в журнале

Библиографическое описание:

Варзаносов, П. В. Выбор системы управления двигателем электромобиля / П. В. Варзаносов. — Текст : непосредственный // Технические науки в России и за рубежом : материалы VI Междунар. науч. конф. (г. Москва, ноябрь 2016 г.). — Москва : Буки-Веди, 2016. — С. 47-51. — URL: https://moluch.ru/conf/tech/archive/228/11297/ (дата обращения: 16.11.2024).



Ключевые слова: электромобиль, система управления электроприводом, векторное управление

Электромобиль — современное новое экологичное средство передвижения. Несмотря на большую популярность бензиновых автомобилей, неизбежное будущее будет за машинами, не загрязняющими окружающую среду. И тенденция развития электротранспорта вполне логична. Растущие цены на бензин заставляют задумать об экономичности использования автомобилей с бензиновым двигателем, растущий уровень шума в городах, производимый машинами пагубно влияет на здоровье граждан. Эти и многие другие факторы привели к тому, что каждая ведущая автомобильная компания взялась за разработку собственного электромобиля [1]. Качественным отличием электромобиля от автомобиля является использование асинхронного либо синхронного трехфазного электродвигателя вместо традиционного бензинового. Управление мотором электродвигателя требует определенного быстродействия и создания необходимого момента на валу. Для этих целей используют различные системы управления электродвигателем. О выборе системы управления для электромобиля будет рассказано в этой статье.

Для того чтобы понять какое место занимает электродвигатель в машине и каким образом происходит управление, рассмотрим блок-схему перспективного электромобиля, представленную на рисунке 1 [3]. На схеме изображены основные элементы, а именно:

‒ электродвигатель;

‒ питающая аккумуляторная батарея;

‒ упрощенная трансмиссия, оснащенная одноступенчатым редуктором;

‒ инвертор;

‒ зарядное устройство на борту, чтобы обеспечивать возможность зарядки от бытовой розетки;

‒ электронная система управления элементами конструкции;

‒ DC-DC преобразователь;

‒ вспомогательная батарея, которая используется в качестве питающего элемента климат-контроля, аудиосистемы, освещения.

‒ управление электромобилем [2].

C:\Users\Павел\YandexDisk\Скриншоты\2016-10-29_11-59-49.png

Рис. 1. Блок-схема электромобиля

Инвертор — это элемент, которые преобразует постоянный ток в трехфазный переменный, а также включает в себя систему управления двигателями. Чтобы понять, какие параметры влияют на систему управления, рассмотрим структуру инвертора, изображенную на рисунке 2 [3].

C:\Users\Павел\YandexDisk\Скриншоты\2016-10-29_13-04-56.png

Рис. 2. Блок-схема инвертора

Опыт различных компаний в создании и реализации электромобилей, накопленный к настоящему моменту позволяют выдвинуть определенные требования не только к самому электромобилю, но и к системе управления приводом автомобиля, в частности. Из всего ряда требований, выдвигаемых к электромобилю, выберем те, что относятся к системе управления двигателем и улучшают потребительские качества автомобиля, как средства передвижения.

Основные требования к системе управления электроприводом:

‒ плавное изменение скорости;

‒ стабильность автоматического поддержания установленной водителем скорости не ниже 10 %, данное требование позволяет энергетически выгодно использовать энергию в условиях городской эксплуатации;

‒ плавное управление тяговым и тормозным моментом при разгоне и торможении соответственно;

‒ автоматическое ограничение максимального момента и мощности на определенном уровне;

‒ ограничение зарядного тока при рекуперативном торможении, при определенном уровне заряда;

‒ возможность движения в режиме наката с последующим плавным разгоном или электрическим торможением;

На микроконтроллере частотного преобразователя выполняется программное обеспечение, которое управляет скоростью и моментом двигателя за счет изменения частоты, напряжения, промежуточных токов в различных системах координат. Основные методы управления представлены на рисунке 3.

C:\Users\Павел\YandexDisk\Скриншоты\2016-10-29_15-35-37.png

Рис. 3. Методы управления [5].

Рассмотрим системы управления, наиболее часто использующиеся в различных частотных преобразователях.

Скалярное управление или как его еще называют частотное, так как этот метод управления электродвигателем переменного тока заключается в том, что поддерживается постоянное соотношение напряжение/частота во всем рабочем диапазоне скоростей, следственно изменяя частоту изменяется напряжение, а за ним и скорость вращения ротора. Это отношение вычисляется исходя из номинальных значений напряжения и частоты. Поддерживание этого соотношения на определенном уровне, можно поддерживать магнитный поток на определенном уровне. Существенным плюсом этой системы является простота ее реализации. Этот единственный плюс нивелируется такими недостатками как:

‒ Невозможно реализовать бездатчиковую систему управления асинхронным двигателем с набросом нагрузки, а система с датчиком скорости имеет низкую точность управления с нагрузкой, синхронный двигатель может вовсе выйти из синхронизма при увеличении момента выше предельного;

‒ Невозможно одновременно управлять и моментом, и скоростью двигателя;

Чаще всего скалярное управление используется в системах с большим диапазоном регулирования скорости. В нашем случае, данная система управления не подходит в виду того, что в электромобиле необходима точная регулировка скорости с нагрузкой на валу, а также в виду того, что скалярное управление не позволяет плавно изменять момент на валу.

Векторное управление, в отличие от скалярного, позволяет независимо и практически безынерционно управлять скоростью вращения и моментом на валу двигателя. Как показывает практика, недостаточно управлять напряжением и частотой, необходимо управлять и фазой, то есть контролировать значение и угол пространственного вектора [4]. Существующие методы управления моментом обычно классифицируют на две группы исходя из того, какие по своей структуре используются регуляторы, а именно: линейные и нелинейные (гистерезисные). В данной статье не подразумевается производить глубокий анализ всех систем управления в виду емкости теории по каждой из них, поэтому рассмотрим особенности, преимущества и недостатки векторных систем с управлением моментом.

Полеориентированное управление подразумевает отдельное управление как моментом, так и полем статора с помощью составляющих вектора поля статора. Все особенности этой системы связаны с указанием в программе правильных и точных характеристик двигателя, то есть использовать адекватную модель электропривода [6]. При использовании системы с прямым управлением моментом с пространственно-векторной модуляцией напряжения необходимо точно вычислять нагрузку на валу, линейность регулятора уменьшает пульсации момента, позволяет плавно запускать двигатель и уверенно работать на низких оборотах, но ухудшает динамические характеристики. Особенностью нелинейного регулятора с прямым управлением моментом заключается в том, что порядок включения транзисторных ключей определяется таблицей, в которой заключены различные состояния вектора напряжения. Характеристики системы зависят от ее настройки и частоты сравнения с вектором напряжения. Увеличение частоты приводит к увеличению стоимости соответственно. Характерными особенностями прямого управления является полное использование возможностей инвертора по напряжению, а также отличная динамика при работе с постоянным и ослабевающим полем.

Наиболее подходящей для системы управления электромобиля является система векторного управления с прямым управлением моментом с таблицей включения. Отразив в таблице все возможные состояния вектора и увеличив частоту итераций можно получить отличные и статические, и динамические характеристики, а также удовлетворить всем другим требованиям, выдвинутым к системе. На данном этапе развития электромобилей эта система управления однозначно приведет к существенному удорожанию системы управления, а следственно и всего электромобиля, но в дальнейшем, по мере увеличения популярности электрокаров, по прогнозам экспертов, цена снизится, а вот качество управления останется на высоком уровне.

Литература:

  1. Варзаносов П. В.Анализ преимуществ и недостатков видов легкого электротранспорта / В сборнике: Технические науки: проблемы и перспективы Материалы IV Международной научной конференции. 2016. С. 89–91.
  2. http://autoleek.ru/dvigatel/jelektricheskij-dvigatel/ustrojstvo-jelektromobilja.html (дата обращения 29.10.2016)
  3. http://toshiba.semicon-storage.com/ru/application/automotive/ecology/hev-ev.html (дата обращения 29.10.2016)
  4. CristianBusca. Открытый контур управления низкой скорости для СДПМ в высоком динамическом приложении. — Ольборг, Дания.: Ольборг университет, 2010.
  5. http://engineering-solutions.ru/motorcontrol/vfd/ (дата обращения 29.10.2016)

6. Семыкина И. Ю., Завьялов В. М. Сравнительный анализ систем регулирования угловой скорости асинхронного электродвигателя / Вестник Кузбасского государственного технического университета 2005. № 6 (51). С. 61–66.

Основные термины (генерируются автоматически): система управления, прямое управление, векторное управление, момент, скалярное управление, DC-DC, метод управления, напряжение, система, электродвигатель.

Похожие статьи

Интеллектуальная система управления полным приводом автомобиля

В данной статье рассматривается интеллектуальная система управления полным приводом, приводятся структурные схемы аппаратной и программной части системы управления.

Разработка алгоритма функционирования интеллектуальной системы полного привода автомобиля

В данной статье автор составляет алгоритм функционирования для системы управления полноприводного автомобиля с электромагнитной фрикционной муфтой.

Расчет приоритетов контроля технического состояния систем автомобиля

В статье представлен расчет приоритетов контроля технического состояния системы автомобиля на примере электронной системы управления двигателем автомобиля.

Система управления вариатором

В данной работе была рассмотрена система управление вариатором (CVT) W1CJA установленном на автомобиле Mitsubishi Lancer. Так же проанализирован процесс управления шкивами вариатора.

Использование беспилотной автотракторной техники, оборудованной бесступенчатой трансмиссией CVT

В данной статье рассматриваются образцы беспилотной автотракторной техники, особенности её реализации и возможность применения трансмиссии CVT.

Электрический стояночный тормоз

В данной работе рассмотрен электрический стояночный тормоз на примере Volkswagen Passat. Приведены возможности и принцип действия электрического стояночного тормоза, а также преимущества.

Развитие конструктивных схем экзоскелетов

В работе были рассмотрены вопросы организации управляемого движения экзоскелета в процессе подъема груза. Разработка экзоскелета с гидравлическим приводом, управляемым оператором через систему рычагов, контролирующих гидрораспределители.

Модернизация топливного насоса высокого давления с целью повышения мощности двигателя

В статье авторы излагают способ модернизации топливного насоса высокого давления автомобиля КамАЗ.

Драйверы двигателей постоянного тока на примере IR3220 и IRF741

Конструктивный анализ усилителей рулевого управления

Статья раскрывает сущность усилителей рулевого управления, принцип работы, преимущества и недостатки его применения, проводится анализ и сравнение усилителей рулевого управления, работающим по разным принципам. Кроме того, описывается проблема, связа...

Похожие статьи

Интеллектуальная система управления полным приводом автомобиля

В данной статье рассматривается интеллектуальная система управления полным приводом, приводятся структурные схемы аппаратной и программной части системы управления.

Разработка алгоритма функционирования интеллектуальной системы полного привода автомобиля

В данной статье автор составляет алгоритм функционирования для системы управления полноприводного автомобиля с электромагнитной фрикционной муфтой.

Расчет приоритетов контроля технического состояния систем автомобиля

В статье представлен расчет приоритетов контроля технического состояния системы автомобиля на примере электронной системы управления двигателем автомобиля.

Система управления вариатором

В данной работе была рассмотрена система управление вариатором (CVT) W1CJA установленном на автомобиле Mitsubishi Lancer. Так же проанализирован процесс управления шкивами вариатора.

Использование беспилотной автотракторной техники, оборудованной бесступенчатой трансмиссией CVT

В данной статье рассматриваются образцы беспилотной автотракторной техники, особенности её реализации и возможность применения трансмиссии CVT.

Электрический стояночный тормоз

В данной работе рассмотрен электрический стояночный тормоз на примере Volkswagen Passat. Приведены возможности и принцип действия электрического стояночного тормоза, а также преимущества.

Развитие конструктивных схем экзоскелетов

В работе были рассмотрены вопросы организации управляемого движения экзоскелета в процессе подъема груза. Разработка экзоскелета с гидравлическим приводом, управляемым оператором через систему рычагов, контролирующих гидрораспределители.

Модернизация топливного насоса высокого давления с целью повышения мощности двигателя

В статье авторы излагают способ модернизации топливного насоса высокого давления автомобиля КамАЗ.

Драйверы двигателей постоянного тока на примере IR3220 и IRF741

Конструктивный анализ усилителей рулевого управления

Статья раскрывает сущность усилителей рулевого управления, принцип работы, преимущества и недостатки его применения, проводится анализ и сравнение усилителей рулевого управления, работающим по разным принципам. Кроме того, описывается проблема, связа...