О междисциплинарном подходе к оценке техногенной безопасности
Авторы: Извеков Юрий Анатольевич, Рыбалко Екатерина Викторовна, Хрипунова Светлана Сергеевна
Рубрика: 16. Новые технические решения
Опубликовано в
IV международная научная конференция «Актуальные вопросы технических наук» (Краснодар, февраль 2017)
Дата публикации: 30.01.2017
Статья просмотрена: 101 раз
Библиографическое описание:
Извеков, Ю. А. О междисциплинарном подходе к оценке техногенной безопасности / Ю. А. Извеков, Е. В. Рыбалко, С. С. Хрипунова. — Текст : непосредственный // Актуальные вопросы технических наук : материалы IV Междунар. науч. конф. (г. Краснодар, февраль 2017 г.). — Краснодар : Новация, 2017. — С. 66-67. — URL: https://moluch.ru/conf/tech/archive/229/11807/ (дата обращения: 04.04.2025).
В последнее время все чаще становится известно об авариях, катастрофах, террористических актах, различных инцидентах. Особое место в этом ряду принадлежит инцидентам техногенной направленности. Из ранее опубликованных работ [1, 3, 4] видно, что существенная доля приходится, в том числе, на грузоподъемное оборудование, а ущербы от таких аварий и катастроф могут быть сопоставимы с валовым внутренним продуктом региона, а в отдельных случаях, и страны в целом. Оценка техногенной безопасности представляет собой достаточно насущную и актуальную проблему. Эта проблема требует новых подходов.
Оценка техногенной безопасности может быть произведена новыми методами с позиций классической теории вероятности и математического анализа и набирающей обороты нелинейной динамики и теории катастроф.
В качестве объектов исследования выбраны несущие конструкции металлургических мостовых кранов (сталь-ковши, разливочные, заливочные).
В этом случае выходит на первый план задача оценки конструкционной безопасности, которая, в конечном итоге, будет влиять на все параметры технологического процесса, качества и безопасности.
Обобщающее условие анализа и управления безопасностью можно представить в форме
[3](1)
R(t) — риск — сочетание вероятностей Р(t) – возникновения аварий и катастроф и ущербов U(t) от них; nR — запас по рискам (nR ≥ 1); Rc(t) — критический риск; Z(t) — затраты, связанные с формирующимися рисками R(t); mZ — коэффициент эффективности затрат (mZ ≥ 1).
Для выявления элементов или участков конструкции, которые определяют параметр Р(t), будем использовать метод преобразования вероятностей [2]. Определим закон распределения выходных параметров по известному закону распределения вероятностей входных параметров. Будем рассматривать следующие случайные величины, связанные функциональной зависимостью: уровень пластической (упругой) деформации и величина действующей нагрузки; статистические характеристики случайной величины У (выход) определяются как функции случайного аргумента Х (вход), если задан закон распределения Х, что позволит выявить больше характеристик процесса и позволит правильно определить контролируемый параметр.
Возвращаясь к исходным (входным) параметрам очень важно применять адекватные способы сравнения поведения математической модели и объекта. Здесь необходимо использовать функционалы от траектории, так называемых количественных характеристик хаоса. Важным здесь представляется вероятность обнаружения траектории в той или иной области — инвариантная мера динамической системы.
Несущая конструкция всегда подвержена равновесию, устойчивости и потере устойчивости — элементам, которые могут быть исследованы теорией катастроф. Для описания реальной конструкции вводим координаты системы

Для металлургических мостовых кранов основной причиной снижения несущей способности конструкции могут быть соответствующие динамические нагрузки. Такая система остается в локально устойчивом состоянии при нулевых и малых колебаниях до тех пор, пока кинетическая энергия не станет настолько большой, что система может перейти потенциальный барьер в другую равновесную конфигурацию.
Основная балка моста крана — конструкция, работающая на изгиб. Если малые нагрузки не вызывают деформации балки, то чрезмерные нагрузки могут привести к потере ею несущей способности — разрушению. Как определяющий параметр можно использовать критическую нагрузку. Равновесная форма такой балки при отсутствии нагрузки определится:
(2)
Вычисления ряда Фурье могут быть выполнены в бесконечномерном пространстве состояний, в котором переменными состояния являются его коэффициенты а. Дальнейшие рассуждения и расчеты приводят к выводу, что разрушение конструкции или потеря несущей способности происходят при превышении критической нагрузки.
Полученное теоретическое обоснование междисциплинарного подхода к оценке техногенной безопасности позволяет с известным уровнем допущения принципиально оценить риски, связанные с этим важным моментом конструкций.
Используя такие подходы, можно определить вероятность возникновения техногенных инцидентов и ущербов от них. По результатам дальнейших исследований можно провести расчеты и построить нормы рисков для определенного класса оборудования. Это позволит существенно влиять на обеспечение техногенной безопасности и управление ею.
Литература:
1. Бархоткин В. В., Извеков Ю. А., Миникаев С. Р. Обзор аварий на крановом оборудовании металлургических производств. // Международный журнал прикладных и фундаментальных исследований. — Москва, РАЕ, 2013. — № 10–1. С. 9–11.
2. Бирюков М. П. Динамика и прогнозирующий расчет механических систем. // «Вышэйшая школа». — Минск, 1980. — 189 с: ил.
3. Извеков Ю. А. Анализ техногенной безопасности кранового хозяйства России. // Современные наукоемкие технологии. — Москва, РАЕ, 2012. — № 12. С. 18–19.
4. Извеков Ю. А. Прогнозирование надежности несущих конструкций кранов металлургических производств. Вопросы. Гипотезы. Ответы: Наука XXI века: Коллективная монография. — Краснодар, 2013. Книга 6, часть 3, глава 9. С. 189–211.