Золотой треугольник | Статья в журнале «Юный ученый»

Отправьте статью сегодня! Журнал выйдет 1 февраля, печатный экземпляр отправим 5 февраля.

Опубликовать статью в журнале

Автор:

Научный руководитель:

Рубрика: Спецвыпуск

Опубликовано в Юный учёный №2 (11) апрель 2017 г.

Дата публикации: 26.03.2017

Статья просмотрена: 2406 раз

Библиографическое описание:

Прямостанов, А. М. Золотой треугольник / А. М. Прямостанов, О. Е. Пароднова. — Текст : непосредственный // Юный ученый. — 2017. — № 2.2 (11.2). — С. 77-79. — URL: https://moluch.ru/young/archive/11/822/ (дата обращения: 19.01.2025).



В статье описывается дано определение золотого треугольника, способ построения и применение в различных задачах.

Ключевые слова: золотой треугольник, применение золотого треугольника.

Золотой треугольник— это равнобедренный треугольник, в котором две боковые (равные) стороны находятся в золотой пропорции с основанием[1]. Нетрудно определить углы золотого треугольника (36°,72°,72°). Золотые треугольники можно увидеть в развёртках звёздчатых форм додекаэдра и икосаэдра, в вершинах пентаграммы, в десятиугольнике.

Построение золотого треугольника. Строим прямую АК. От точки А на прямой откладываем три раза отрезок произвольной величины (d), через полученную точку Р проводим перпендикуляр к линии АК, на перпендикуляре вправо и влево от точки Р откладываем отрезки длины d. Полученные точки D и D1 соединяем с точкой А. Отрезок DD1 откладываем на линию AD1, получая точку С. Точка С разделила линию AD1 в пропорции золотого сечения. Треугольник АDD1 – искомый.

При построении логарифмической спирали используется золотой треугольник. (Начиная с большого треугольника) делим угол при основании пополам, получаем следующую точку. Процесс деления может продолжаться бесконечно, создавая бесконечно много золотых треугольников. Логарифмическую спираль можно провести через полученные вершины. Эта спираль известна как равноугольная спираль. Термин предложил Рене Декарт: «Если провести прямую из полюса к любой точке на кривой, она пересечёт кривую всегда под одним и тем же углом» (рис. 1)

Золотой гномон, тупоугольный равнобедренный треугольник, в котором отношение длины боковых сторон к длине основания является обратным к золотому отношению. Золотой гномон является уникальным треугольником с пропорцией углов 1:1:3. Его острые углы составляют 36°, то же значение, что и у угла при вершине золотого треугольника.

Золотой треугольник может быть разрезан на золотой треугольник и золотой гномон. То же самое верно для золотого гномона. Золотой гномон и золотой треугольник с их равными сторонами (сторона гномона равна стороне треугольника) также являются тупым и острым треугольниками Робинсона. (рис. 2) Эти равнобедренные треугольники могут быть использованы для получения мозаик Пенроуза. Плитки Пенроуза состоят из «змеев» и «дротиков». «Змей» представляет собой золотой треугольник, а «дротик» состоит из двух гномонов.

https://upload.wikimedia.org/wikipedia/commons/thumb/b/b9/Golden_triangle_and_Fibonacci_spiral.svg/220px-Golden_triangle_and_Fibonacci_spiral.svg.pngРис.1

https://upload.wikimedia.org/wikipedia/commons/thumb/a/a5/Golden_triangle_%28math%29.svg/220px-Golden_triangle_%28math%29.svg.png

Рис.2

В планиметрических и стереометрических задачах золотой треугольник встречается в явном виде:

  1. Доказать, что биссектрисы при основании золотого треугольника равны основанию.
  2. Для золотого треугольника найти: медиану, проведенную к боковой стороне; высоту, проведенную к основанию; площадь.
  3. Найти радиусы описанной и вписанной окружностей золотого треугольника.
  4. Диагональ параллелограмма разбивает его на два золотых треугольника, в каждый из которых вписана окружность. Найти расстояние между центрами этих окружностей.
  5. Найти радиусы вневписанных окружностей золотого треугольника.
  6. Найти расстояния между скрещивающимися ребрами золотой пирамиды (Золотая пирамида, пирамида у которой каждая грань – золотой треугольник).
  7. Найти угол между скрещивающимися ребрами золотой пирамиды.
  8. Найти высоту золотой пирамиды.
  9. Найти объем золотой пирамиды.
  10. Найти двугранные углы золотой пирамиды.
  11. Для золотой пирамиды найти радиусы описанной и вписанной сфер.

И в неявном виде: золотой треугольник и его свойства применяются при решении задач:

  1. Найти длины диагоналей правильного 10-угольника со стороной, равной 1.
  2. Египетская пирамида Хеопса – правильная четырехугольная со стороной основания 233,16 м., угол наклона боковой грани к основанию равна 51°50´. Найти высоту пирамиды Хеопса и показать, что .

Литература:

  1. Каменева Т., Козлов А., Урмузов А. Золотой треугольник в задачах-М.:Чистые пруды, 2008.-32 с.
  2. Зубова С.П., Лысогорова Л.В. Некоторые аспекты структурирования курса математики в 10 классе. Развитие современного образования: теория, методика и практика. 2016. № 2 (8). С. 63-65.
  3. Лысогорова Л.В. Закономерности процесса обучения математике как основа реализации принципа быстрого продвижения обучающихся в развитии. Молодой ученый. 2016. № 5-6 (109). С. 68-70.
  4. Лысогорова Л.В., Кочетова Н.Г., Зубова С.П. Реализация принципа обучения математике на повышенном уровне трудности. В сборнике: Научные проблемы образования третьего тысячелетия VII Всероссийская научно-практическая конференция с международным участием. 2013. С. 109-114.
Основные термины (генерируются автоматически): золотой треугольник, золотая пирамида, золотой гномон, основание, треугольник, угол.


Ключевые слова

золотой треугольник, применение золотого треугольника

Похожие статьи

Построение и применение треугольника Рело

В статье автор проводит изучение такого объекта как треугольник Рело. Изучаются различные варианты его построения и способы его использования в реальном мире.

Решение геометрических задач методом «Золотого сечения»

Данная статья посвящена обзору различных способов решения геометрических задач с помощью метода «золотого сечения». Рассмотрен математический термин «золотое сечение», его основные свойства.

Фигуры постоянной ширины

Статья посвящена рассмотрению основных свойств фигур постоянной ширины, систематизации знаний о них и использованию этих фигур в повседневной жизни.

Математический способ построения куполов православных церквей луковичной формы

В статье автор рассказывает о наиболее часто встречающихся куполах православных церквей и описывает механизм его построения.

Теорема Пифагора и её применение для 8-х классов

В статье рассматривается история теоремы Пифагора и её применения на практике и в теории. Приведены различные примеры из жизненных задач.

Методы извлечения квадратного корня

В статье описываются способы извлечения квадратного корня, и приведены примеры извлечения корней.

Методическая разработка интегрированного урока «Объём прямоугольного параллелепипеда»

В статье авторы пытаются определить взаимосвязь математики и английского языка.

Биангулярная система координат

В данной статье исследуется биангулярная система координат, а также изучается её связь с другими координатами, а также рассматриваются примечания к данной системе координат. При написании работы были использованы методы математического анализа, анали...

Метод коэффициентов при решении квадратных уравнений

В статье описываются нестандартные способы решения квадратных уравнений.

Методика использования нового механизма для построения аксонометрических проекций

В настоящей статье рассматривается методика использования нового механизма для построения аксонометрических проекций.

Похожие статьи

Построение и применение треугольника Рело

В статье автор проводит изучение такого объекта как треугольник Рело. Изучаются различные варианты его построения и способы его использования в реальном мире.

Решение геометрических задач методом «Золотого сечения»

Данная статья посвящена обзору различных способов решения геометрических задач с помощью метода «золотого сечения». Рассмотрен математический термин «золотое сечение», его основные свойства.

Фигуры постоянной ширины

Статья посвящена рассмотрению основных свойств фигур постоянной ширины, систематизации знаний о них и использованию этих фигур в повседневной жизни.

Математический способ построения куполов православных церквей луковичной формы

В статье автор рассказывает о наиболее часто встречающихся куполах православных церквей и описывает механизм его построения.

Теорема Пифагора и её применение для 8-х классов

В статье рассматривается история теоремы Пифагора и её применения на практике и в теории. Приведены различные примеры из жизненных задач.

Методы извлечения квадратного корня

В статье описываются способы извлечения квадратного корня, и приведены примеры извлечения корней.

Методическая разработка интегрированного урока «Объём прямоугольного параллелепипеда»

В статье авторы пытаются определить взаимосвязь математики и английского языка.

Биангулярная система координат

В данной статье исследуется биангулярная система координат, а также изучается её связь с другими координатами, а также рассматриваются примечания к данной системе координат. При написании работы были использованы методы математического анализа, анали...

Метод коэффициентов при решении квадратных уравнений

В статье описываются нестандартные способы решения квадратных уравнений.

Методика использования нового механизма для построения аксонометрических проекций

В настоящей статье рассматривается методика использования нового механизма для построения аксонометрических проекций.

Задать вопрос