Теория вероятности в азартных играх | Статья в журнале «Юный ученый»

Отправьте статью сегодня! Журнал выйдет 28 декабря, печатный экземпляр отправим 1 января.

Опубликовать статью в журнале

Автор:

Научный руководитель:

Высокая теоретическая значимость Необычная тема исследования

Рубрика: Математика: алгебра и начала анализа, геометрия

Опубликовано в Юный учёный №3 (66) март 2023 г.

Дата публикации: 22.02.2023

Статья просмотрена: 3378 раз

Библиографическое описание:

Мосеева, Э. В. Теория вероятности в азартных играх / Э. В. Мосеева, А. М. Михеенко. — Текст : непосредственный // Юный ученый. — 2023. — № 3 (66). — С. 83-85. — URL: https://moluch.ru/young/archive/66/3520/ (дата обращения: 19.12.2024).



В данной статье рассматривается возможность выигрыша в азартной игре под названием «Рулетка» с точки зрения теории вероятностей. Приводятся рассуждения, подтверждающие основную гипотезу о «практической невозможности» выигрыша в азартные игры на длинной дистанции.

Ключевые слова: вероятность, теория игр, рулетка, математическое ожидание.

Введение

Множество естественных наук опирается на вероятностные методы. На самом деле, первые труды ученых-математиков, посвященные теории вероятности как науке, объектом исследования и изучения принимали выявление закономерности и возможности предвидения исхода азартных игр. Подобная наука не определяет точного результата игры, а лишь дает оценку возможностям и шансам игроков. Раздел математики, изучающий выбор оптимальных стратегий в конфликтных ситуациях, в рамках которых идет борьба между участниками, называется «Теория игр». Математика позволяет просчитать вероятности победы в игре и выработать стратегии. Но значит ли это что, зная математику, а в частности теорию вероятности можно выигрывать в азартных играх? Разберем основные понятия теории вероятности и как она применяется в играх.

  1. Основные понятия теории вероятностей
  1. Случайное событие — явление, о котором имеет смысл говорить, что оно происходит или не происходит.
  2. Достоверное событие — событие которое обязательно произойдёт при осуществлении определённой совокупности условий.
  3. Невозможное событие — событие которое никогда не произойдёт при определённой совокупности условий.
  4. Единственное возможное событие — события называют единственно возможными, если наступление одного из них — это событие достоверное.
  5. Равновозможные события — события называют равновозможными, если ни одно из них не является более возможным, чем другие.
  6. Совместимые и несовместимые события — два события называются несовместимыми, если появление одного из них исключает появление другого. В противном случае события называются совместимыми.
  7. Классическое определение вероятности: Вероятностью события называется отношение числа m элементарных исходов, благоприятствующих этому событию, к общему числу элементарных исходов испытания .
  8. Основные формулы комбинаторики [1]:

— Число перестановок ;

— Число размещений Anm=n⋅(n−1)⋅...⋅(n−m+1);

— Число сочетаний

  1. Математическое ожидание случайной величины X (обозначается M(X) характеризует среднее значение случайной величины [2].

  1. Применение теории вероятности в азартной игре

Математическое ожидание в рулетке

Рулетка — азартная игра, которая представляющая из себя вращающееся колесо с 37 секторами, 18-черных секторов, 18-красных и один сектор зеленый-зеро. Игроки, играющие в рулетку, могут сделать ставку на выпадение цвета (красного или черного), числа (чётного или нечётного), диапазона (1–18 или 19–36) или конкретного числа. Также существует и другие ставки.

Существует множество «выигрышных» стратегий игры в рулетку, одна из самых популярных — это стратегия Мартингейла (удвоения), при которой игрок делает ставки только на один цвет [1]. При этом после каждого проигрыша ставка удваивается, после выигрыша ставка возвращается к первоначальной. Минус этой стратегии состоит в том, что во всех казино стоит ограничение по ставке, иными словами, при очередном проигрыше не получится удвоить ставку. Все остальные стратегии также терпят неудачу, при применении формулы математического ожидания. Применяя к игре математическое ожидание является суммой, которую вы можете заработать или проиграть в среднем по каждой ставке.

Рассчитаем математическое ожидание при различных ставках. Ставка всегда равна 1. Х — величина выигрыша или проигрыша; Р(х) — вероятность.

Ставка на цвет:

Х

1

-1

Р(х)

18/37

19/37

Ставка на число:

Х

35

-1

Р(х)

1/37

36/37

Ставка на пару чисел

Х

17

-1

Р(х)

2/37

35/37

Во всех случаях математическое ожидание отрицательное. Правила игры созданы так, что с повышением вероятности того, что произойдёт определённое событие, уменьшается ставка на это событие, при этом математическое ожидание остаётся неизменным.

  1. Заключение

Знание математики определенно помогает при игре в азартные игры, но даже умело просчитывая вероятность проигрыша и победы не получится всегда быть в плюсе. Выигрыши в казино бывают, но это случайные события, которые невозможно гарантированно повторить. Желание увеличить прибыль приводит к погоне за следующей удачей, и в этой погоне на ставках люди теряют все деньги, включая выигранные. А всё потому, что чем больше ставок делает игрок, тем сильнее работает математическое ожидание в пользу казино и тем быстрее он проигрывает. Всегда длительная игра в азартные игры приводит к проигрышу в независимости от знаний математики и удачи.

Литература:

  1. Шклярник. В. С. Введение в комбинаторику и теорию вероятностей. Учеб. пособие, изд.. второе, исправ. и доп. СПб., ЛОИРО, 2017
  2. Кретов М. В. Теория вероятностей и математическая статистика: учебное пособие — Калининград: Янтарный сказ, 2004.


Похожие статьи

Методические аспекты преподавания статистики и теории вероятностей в школьном курсе математики

Автор в статье рассказывает об основных аспектах преподавания теории вероятности в школе.

Математическое моделирование банкротства предприятия

В данной статье исследуются различные механизмы выплат долгов кредиторам при банкротстве предприятия. Особый интерес представляют механизмы, использующие методы математической теории игр. Проведен обзор задачи в статическом случае и предложен новый п...

Парадокс двух конвертов

В статье описывается известная в теории вероятностных и статистических моделей задача о парадоксе двух конвертов, разрешение парадокса и дается ответ на вопрос: «Как сделать задачу корректной?».

Применение различных подходов к решению задач теории вероятностей при подготовке к экзаменам

Существуют различные методы решения задач теории вероятностей. Решение задач при помощи стандартных формул теории вероятностей (формулы сложения/умножения вероятностей/условной вероятности/ Байеса/ полной или не полной вероятности), решение методом п...

Влияние математических логических способностей на выигрыш в шашки

В статье авторами предпринята попытка философско-антропологического, психолого-педагогического исследования и обобщения знаний по теме «Влияние математических логических способностей на выигрыш при игре в шашки».

Моделирование комбинаторных систем при помощи сводимости

Статья посвящена моделированию систем, ее реализации в компьютере, в частности с использованием сводимости, в то же время рассматривается теория алгоритмов и возможность ее применения к моделированию.

Математическая модель анализа результатов футбольных матчей

В статье авторы приводят описание математической модели анализа результатов футбольных матчей для нескольких статистических характеристик.

Решение геометрических задач методом «Золотого сечения»

Данная статья посвящена обзору различных способов решения геометрических задач с помощью метода «золотого сечения». Рассмотрен математический термин «золотое сечение», его основные свойства.

Решение логической задачи разными способами и сравнение их эффективности

Статья посвящена обзору различных способов решения логических задач и сравнению их эффективности. Логические задачи можно решать различными способами. У каждого из них есть свои достоинства и недостатки. Поэтому для решения подобного типа задач нужно...

Методика определения ресурсоемкости проекта некомбинаторным методом

Статья посвящена описанию методики определения ресурсоемкости проекта, в частности в части трудовых ресурсов некомбинаторным способом, что существенно упрощает вычислительную сложность задачи.

Похожие статьи

Методические аспекты преподавания статистики и теории вероятностей в школьном курсе математики

Автор в статье рассказывает об основных аспектах преподавания теории вероятности в школе.

Математическое моделирование банкротства предприятия

В данной статье исследуются различные механизмы выплат долгов кредиторам при банкротстве предприятия. Особый интерес представляют механизмы, использующие методы математической теории игр. Проведен обзор задачи в статическом случае и предложен новый п...

Парадокс двух конвертов

В статье описывается известная в теории вероятностных и статистических моделей задача о парадоксе двух конвертов, разрешение парадокса и дается ответ на вопрос: «Как сделать задачу корректной?».

Применение различных подходов к решению задач теории вероятностей при подготовке к экзаменам

Существуют различные методы решения задач теории вероятностей. Решение задач при помощи стандартных формул теории вероятностей (формулы сложения/умножения вероятностей/условной вероятности/ Байеса/ полной или не полной вероятности), решение методом п...

Влияние математических логических способностей на выигрыш в шашки

В статье авторами предпринята попытка философско-антропологического, психолого-педагогического исследования и обобщения знаний по теме «Влияние математических логических способностей на выигрыш при игре в шашки».

Моделирование комбинаторных систем при помощи сводимости

Статья посвящена моделированию систем, ее реализации в компьютере, в частности с использованием сводимости, в то же время рассматривается теория алгоритмов и возможность ее применения к моделированию.

Математическая модель анализа результатов футбольных матчей

В статье авторы приводят описание математической модели анализа результатов футбольных матчей для нескольких статистических характеристик.

Решение геометрических задач методом «Золотого сечения»

Данная статья посвящена обзору различных способов решения геометрических задач с помощью метода «золотого сечения». Рассмотрен математический термин «золотое сечение», его основные свойства.

Решение логической задачи разными способами и сравнение их эффективности

Статья посвящена обзору различных способов решения логических задач и сравнению их эффективности. Логические задачи можно решать различными способами. У каждого из них есть свои достоинства и недостатки. Поэтому для решения подобного типа задач нужно...

Методика определения ресурсоемкости проекта некомбинаторным методом

Статья посвящена описанию методики определения ресурсоемкости проекта, в частности в части трудовых ресурсов некомбинаторным способом, что существенно упрощает вычислительную сложность задачи.

Задать вопрос