В данной статье излагаются взгляды, связанные с альтернативными источниками энергии на основе растительных продуктов. Показаны преимущества и недостатки их использования в быту. Особое внимание отводится на выяснение более эффективного метода изготовления и использования данного источника электроэнергии.
Ключевые слова: овощи, фрукты, гальванический элемент, химический процесс, электросеть, растительный продукт, природный электролит.
На сегодняшний момент альтернативные источники энергии могут обеспечить дом теплом, электроэнергией, газом, теплой водой. Причем использование альтернативной энергии не требует каких-то сверх навыков или сверх знаний. Все можно сделать для своего дома своими руками. Человеческая изобретательность не знает границ. Ученые предлагают необычные источники энергии, которые помогут в будущем решить и энергетические и экологические проблемы Земли [3, 4]. Одним из потенциальных источников альтернативной энергии может быть батарея гальванических элементов, основанных на химической реакции растительных кислот природных продуктов и медно-цинковых контактах [2].
Природная электробатарея представляет из себя набор последовательно связанных плодов или иных частей растения (их число может варьироваться от 6 и более штук), контакты (медные и цинковые), любое маломощное и малопотребляющее электронное устройство (электронные часы, калькулятор, ночник и т. д.) [5].
Для сборки питающего элемента был составлен чертёж электро-схемы подключения гальванических элементов друг к другу и к нагрузке (рис. 1).
Рис. 1. Электрическая схема подключения гальванических элементов
В качестве источника электролита для батареи можно использовать множество различных овощей и фруктов, а также некоторые бытовые продукты [1]. С целью поиска эффективного и недорогого растительного продукта, предназначенного для применения в гальванических элементах, был проведён ряд тестов по измерению напряжения электробатарей на основе различных овощей и фруктов (рис. 2)
Рис. 2. Тесты напряжения различных природных электробатарей
Некоторые данные об электрическом токе и напряжении при использовании описанных выше электролитов как гальванических элементов описаны ниже (табл. 1).
Таблица 1
Тесты энергоэффективности растительных продуктов, как гальванические элементы
Название |
Напряжение, В |
Сила тока, А |
Стоимость руб./кг. |
Лимон |
0,90 |
0,18 |
150 |
Яблоко |
1,0 |
0,12 |
70 |
Огурец (свежий) |
0,94 |
0,11 |
80 |
Огурец (соленный) |
1,0 |
0,2 |
90 |
Картофель (сырой) |
0,80 |
0,45 |
30 |
Картофель (варенный) |
0,69 |
0,35 |
30 |
В ходе проведения эксперимента по обнаружению самого энергоэффективного гальванического элемента, выяснилось, что батареи на яблоках, лимонах и огурцах имеют высокое напряжение, но при этом гораздо дороже энергоэлемента на картофеле, который в свою очередь имеет большую силу тока, что и определяет, выбор материла для растительного аккумулятора.
Сборка данного устройства достаточно проста. Для лучшей эффективности был применён последовательный способ соединения элементов. В качестве медного контакта отлично подходит медный одножильный провод с большим сечением, а в качестве цинкового контакта отлично подходит оцинкованная сталь или корпус от щелочной батарейки типа AA, в качестве соединения между контактами в сборке использовалась не только пайка, но и опрессовка контактов, так как цинковые контакты проблематично облудить. В качестве нагрузки можно для данной сборки подключить светодиод (рис.3).
Рис. 3. Измерение напряжения «картофельной» батареи и демонстрация ее работы
В ходе данной работы были выявлены все преимущества и недостатки данного природного гальванического элемента. К преимуществам можно отнести: автономность, доступность, простота и дешевизна производства. Недостатками природной электробатареи являются: малая мощность, небольшое время работы, большой размер.
Таким образом, можно сказать, что источник энергии на базе растительных продуктов подходит для маломощных устройств, требующих автономный источник электричества. В перспективе планируется создание энергоячейки небольших размеров на основе жидкости, полученной из растительных продуктов с повышенной эффективностью, за счет более концентрированного электролита.
Литература:
- Гуренков Д. Электрическая проводимость овощей и фруктов // Шаг в науку: материалы VI региональной научно-образовательной конференции. 2016. С. 26.
- Задерновский А. А., Паламарчук И. В., Сафронов А. А. Природные источники электрического тока // Физика в системе современного образования (ФССО-15): материалы XIII Международной конференции. 2015. С. 289–290.
- Закиров Д. И., Шонин М. Ю. Разработка мобильного источника солнечной энергии Solar Multi Power Bank // Юный ученый. — 2022. — № 10 (62). — С.54–56.
- Пензин П. А., Шонин М. Ю., Пензина И. В. Применение альтернативных источников энергии (на материалах Челябинской области) // Юный ученый. — 2018. — № 6 (20). — С. 42–45.
- Фортуна Д. А., Смирнова Т. В. Овощи и фрукты как источник электричества // Творчество юных: сборник трудов 26-й Региональной научно-практической конференции учащихся. Редколлегия: А. В. Бабич [и др.]. Москва, 2022. С. 223–228.