Математические головоломки: полимино | Статья в журнале «Юный ученый»

Отправьте статью сегодня! Журнал выйдет 1 февраля, печатный экземпляр отправим 5 февраля.

Опубликовать статью в журнале

Библиографическое описание:

Математические головоломки: полимино / Д. А. Головин, Е. Э. Дубровский, К. И. Ловков [и др.]. — Текст : непосредственный // Юный ученый. — 2016. — № 6.1 (9.1). — С. 21-23. — URL: https://moluch.ru/young/archive/9/620/ (дата обращения: 19.01.2025).



Вроде простою казалась задача -

Всё же от вас отвернулась удача.

Вам теперь плакать хочется громко?

Значит — это головоломка!

Матвеева Т.

Наш проект посвящен полимино — одной из самых известных и занимательных математических головоломок.

Цель нашего проекта- исследование всех возможных видов и комбинаций полимино.

Мы поставили перед нашей группой следующие задачи:

- Узнать, кто изобрёл полимино

- Найти и подсчитать количество всех возможных фигур для каждого вида головоломки

- Научиться составлять различные фигуры из полимино

- Рассказать об этой интереснейшей головоломке одноклассникам

Полимино, или полиомино (англ. polyomino) — плоские геометрические фигуры, образованные путём соединения нескольких одноклеточных квадратов по их сторонам.

Полимино существует много видов: мономино (1 квадрат), домино (2 квадрата), тримино (3 квадрата), тетрамино (4 квадрата), пентамино (5 квадратов), гексамино(6 квадратов), гептамино (7 квадратов) и т. д..

im240-320px-L-polyomino_svg.png

Рис.1 Виды полимино

Существует только один тип домино, два типа тримино и пять типов тетрамино.

3-1000px-Trominoes_svg.png300-tetris.png

Рис.2 Тримино и тетрамино

На кружке мы смогли определить, что у пентамино число различных фигур 12.

800px-Pentominos_svg_.png

Рис.3 Пентамино

На занятии, а потом и дома выяснили, что существует 35 различных разновидностей гексамино, а потом на сайте, посвященном полимино, узнали, что есть 108 разновидностей гептамино.

600px-All_35_free_hexominoes_svg.png

Рис.4 Гексамино

Число различных полимино данного порядка, зависит от того, из скольких квадратов составлены фигуры (то есть от порядка), но пока еще никому не удалось найти формулу, выражающую эту связь.

Чтобы найти число различных фигур n-мино высшего порядка, приходится пускаться в утомительные вычисления, отнимающие много времени

Из деталей полимино можно выкладывать не только геометрические фигуры, но и изображения животных, людей или предметов. В результате получится силуэт — схематичный, но понятный по основным характерным признакам предмета, пропорциональному соотношению частей, по форме.

Рис. 5 Фигурки животных из пентамино

Из двенадцати пентамино можно сложить прямоугольники 6 х 10; 5 х 12; 4 х 15 и 3 х 20. Прямоугольник 3 х 20, со всех точек зрения более сложный. Существует только два различных решения этой задачи, если не считать вращений и отражений.

Профессор Р. Робинсон и Дж. Таккер независимо друг от друга придумали задачу, которая получила название задачи об утроении. Выбрав одно из пентамино, нужно с помощью девяти остальных фигур построить большую фигуру, подобную выбранной. Фигура должна быть в три раза выше и шире, чем первоначальная.

Рис.6 Задача об утроении

А вот прямоугольник из гексамино собрать нельзя.

Полимино использовались в занимательной математике, по крайней мере с 1907 года, а известны были ещё в древности. Многие результаты с фигурами, содержащими от 1 до 6 квадратов, были впервые опубликованы в журнале «Fairy Chess Review» в период с 1937 по 1957 г., под названием «проблемы рассечения». Название «полимино» или «полиомино» было придумано Соломоном Голомбом в 1953 году и затем популяризировано Мартином Гарднером.

Полимино — одна из самых популярных математических головоломок. Игра на все времена — от пяти до ста пяти лет, поэтому стоит обязательно пополнить этой головоломкой свою игротеку

Теперь вы знаете, что такое полимино и кто придумал такую головоломку, какие качества она поможет развить и, может быть, попытаетесь собрать фигуры из набора пентамино.

Работа над данным проектом была для нас полезна, так как во время написания проекта мы расширили свой кругозор, научились творчески мыслить, находить новые решения, фантазировать.

В результате мы реализовали все поставленные задачи и достигли цели исследовательской работы.

Литература:

  1. Голомб С. Полимино. -Пер. с англ. Ю. А. Данилова — М.: Мир, 1975
  2. ГарднерМ.Математическиеновеллы. — Пер. с англ. Ю. А. Данилова. — М.:Мир, 1974
  3. http://fanread.ru/book/7168229/?page=19
  4. http://www.razlib.ru/matematika/matematicheskie_golovolomki_i_razvlechenija/p15.php
  5. http://www.printplay.ru/
Основные термины (генерируются автоматически): фигура, квадрат, полимино, головоломка, задача.


Похожие статьи

Нестандартные способы решения математических задач

В работе раскрываются основные нестандартные способы решения математических задач.

Модель компетенций для подбора контактного персонала отеля

Статья посвящена разработке модели компетенций для подбора контактного персонала гостиничных предприятий.

Разработка и конструирование логического калькулятора

В статье описан процесс разработки и создания собственного логического калькулятора, позволяющего решать основные расчетные задачи математической логики.

Виртуальный измеритель расстояния для учебных физических опытов

Возникновение русских домов моды

В данной статье будет рассмотрена история возникновения русских домов моды. Исследование заключается в том, чтобы проследить развитие и формирование модных домов.

Научное холодильное оборудование

Прочитайте статью, чтобы узнать все о специальном холодильном оборудовании для научно-исследовательских лабораторий.

Формирование компетенций в области дискретной математики у обучающихся старших классов

В статье поднимается вопрос о формировании компетенций у старшеклассников в области дискретной математики.

Интерактивный подход к обучению решения задач двойственным симплекс-методом

Проект «Загадочный космос»

Задачи на переливание: от головоломки к алгоритму

Похожие статьи

Нестандартные способы решения математических задач

В работе раскрываются основные нестандартные способы решения математических задач.

Модель компетенций для подбора контактного персонала отеля

Статья посвящена разработке модели компетенций для подбора контактного персонала гостиничных предприятий.

Разработка и конструирование логического калькулятора

В статье описан процесс разработки и создания собственного логического калькулятора, позволяющего решать основные расчетные задачи математической логики.

Виртуальный измеритель расстояния для учебных физических опытов

Возникновение русских домов моды

В данной статье будет рассмотрена история возникновения русских домов моды. Исследование заключается в том, чтобы проследить развитие и формирование модных домов.

Научное холодильное оборудование

Прочитайте статью, чтобы узнать все о специальном холодильном оборудовании для научно-исследовательских лабораторий.

Формирование компетенций в области дискретной математики у обучающихся старших классов

В статье поднимается вопрос о формировании компетенций у старшеклассников в области дискретной математики.

Интерактивный подход к обучению решения задач двойственным симплекс-методом

Проект «Загадочный космос»

Задачи на переливание: от головоломки к алгоритму

Задать вопрос